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ABSTRACT

ron recycling by macrophages is essential for erythropoiesis, but may

also be relevant for iron redistribution to neighboring cells at the local

tissue level. Using mice with iron retention in macrophages due to tar-
geted inactivation of the iron exporter ferroportin, we investigated the
role of macrophage iron release in hair follicle cycling and wound heal-
ing, a complex process leading to major clinical problems, if impaired.
Genetic deletion of ferroportin in macrophages resulted in iron deficien-
cy and decreased proliferation in epithelial cells, which consequently
impaired hair follicle growth and caused transient alopecia. Hair loss was
not related to systemic iron deficiency or anemia, thus indicating the
necessity of local iron release from macrophages. Inactivation of
macrophage ferroportin also led to delayed skin wound healing with
defective granulation tissue formation and diminished fibroplasia. Iron
retention in macrophages had no impact on the inflammatory processes
accompanying wound healing, but affected stromal cell proliferation,
blood and lymphatic vessel formation, and fibrogenesis. Our findings
reveal that iron/ferroportin plays a largely underestimated role in
macrophage trophic function in skin homeostasis and repair.

Introduction

Tissue resident macrophages play an important role both in tissue homeostasis,
by supporting neighboring parenchymal cells with trophic signals and nutrients,
and in tissue repair following injury.** In the skin context, macrophages are critical
regulators of hair follicle growth® and cutaneous wound healing, two events with
many similarities.® Indeed, perifollicular macrophages prompt the entry of hair fol-
licle stem cells into the anagen phase of growth,” while selective ablation of
macrophages impairs the wound healing response.” Although wound
macrophages display a mixed phenotypic and functional profile, the initial phase
of an injury is characterized by the prevalence of pro-inflammatory, classically
activated M1 macrophages, which are associated with the production of oxygen
radicals and pro-inflammatory cytokines. Conversely, at later stages during reso-
lution of inflammation and tissue repair, alternatively polarized M2 macrophages
oriented to tissue repair and remodeling, predominate."”” This M1 to M2 switch is
required for normal healing.’

Macrophages are also at the cross-road of iron traffic.'"" Iron-recycling
macrophages provide iron for erythropoiesis by clearing senescent erythrocytes."
Conversely, iron sequestration by pro-inflammatory macrophages is a well-
known mechanism of efficient bacteriostasis in host defense.” In line with their
different functions in homeostatic and inflammatory conditions, polarized
macrophages show considerable differences in their transcriptional profiles,"
including a distinct regulation of genes related to iron metabolism.""* Iron reten-
tion by M1 macrophages correlates with high expression of the iron storage pro-
tein ferritin. Conversely, M2 macrophages display increased heme uptake and pro-
duction of anti-inflammatory mediators via heme oxygenase-dependent heme
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catabolism, as well as high expression of the iron exporter
ferroportin (FPN)."

A tight control of iron metabolism is needed for appro-
priate tissue homeostasis and healing. Excess iron, both in
macrophages and in the extracellular milieu, has a delete-
rious effect on tissue repair,”” and heme iron has pro-oxi-
dant and pro-inflammatory properties, so that its clear-
ance and degradation by M2 macrophages contributes to
resolution.”® However, it is also conceivable that increased
iron retention in macrophages leads to lower iron avail-
ability for neighboring cells, thus compromising the
trophic role of macrophages. In fact, given the necessity
of iron for many essential biological functions, including
cell replication,”” defective iron release can jeopardize
iron-dependent functions essential for cutaneous home-
ostasis and efficient tissue restoration. Decreased iron
availability could impair the growth of fibroblasts, as well
as epithelial and endothelial cells during new tissue for-
mation. Moreover, the hydroxylases necessary for effi-
cient collagen assembly during the repair phase are iron-
dependent enzymes.”

In this study, we investigated the role of macrophage iron
metabolism in tissue homeostasis and repair exploiting a
mouse line with iron retention in macrophages caused by
targeted FPN inactivation in cells of the myeloid lineage,
thus avoiding artefactual systemic iron overload and other
confounding elements, such as increased local iron accumu-
lation in other cell types. Using the skin as a model tissue,
we show that macrophage-dependent FPN-mediated iron
release is required for hair growth in homeostatic condi-
tions and for efficient wound healing, a process which is
essential for survival and also clinically relevant, as non-
healing wounds are a major clinical problem associated
with various human diseases.””

Methods

Animals

The crossing of mice carrying a floxed Fpn allele (Fpn pro-
vided by Dr Nancy Andrews, with mice expressing Cre under
the control of the LysM promoter in the C57BL/6] background”
in order to generate mice with specific FPN-macrophage inacti-
vation (Fpnl"LysCre”) is described in detail in the Omnline
Supplementary Matetial.

Procedures involving animals handling and care conformed
with protocols approved by the Humanitas Clinical and
Research Center in compliance with national (DL 116, GU
suppl. 40, 18-2-1992; DL 26, GU 4-3-2014) and international law
and policies (EEC Council Directive 2010/63/EU, OJ L 276/33,
22-09-2010; National Institutes of Health Guide for the Care
and Use of Laboratory Animals, US National Research Council,
2011). The study was approved by the Italian Ministry of
Health. All efforts were made to minimize the number of ani-
mals used and their suffering.

ﬂ/ﬂ) 24
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Statistical analysis

Results are expressed as the mean =+ standard error of mean.
Statistical significance between two groups was assessed by an
unpaired two-tailed Mann-Whitney test or Student ¢ test with
Prism software (GraphPad). For comparison of more than two
groups, data were analyzed using one-way analysis of variance
(ANOVA).

Full details of the Methods are available in the Omnline
Supplementary Material.

Results

Ferroportin deletion in macrophages causes hair
follicle alterations and alopecia

To generate mice that lack FPN in macrophages, we
crossed Fpn® mice” with LysMCre mice® to create
myeloid cell-specific FPN knockout mice. The phenotypic
characterization of these Fpn1"'LysCre* mice is described
in the Ounline Supplementary Material and illustrated in
Online  Supplementary  Figure S1. FPN deletion in
macrophages resulted in a significant decrease of hemato-
logic parameters, such as hemoglobin level and hematocrit
(Figure 1A,B), and red blood cell count, mean corpuscular
volume and mean cell hemoglobin (Online Supplementary
Table S1), at weaning (3 weeks after birth). Thereafter, both
parameters rapidly returned to normal levels and remained
almost unaltered until 18 weeks. In line with the mild ane-
mia observed in 2-month old 129/SvEvTac mice lacking
macrophage FPN,” in weaned Fpn1""LysCre” mice hemo-
globin levels and hematocrit were lower than in
Fpn1""LysCre” mice at all time-points, although the differ-
ence never reached statistical significance (Figure 1A B).
Serum iron levels and transferrin saturation showed a ten-
dency to decrease with age, but were never statistically dif-
ferent between Fpnl""LysCre” mice and their control
Fpn1""LysCre” littermates. The hepatic expression of hep-
cidin (HAMP), which regulates systemic iron homeostasis
by inhibiting FPN,” showed age-related variations but was
not different between Fpn1*"LysCre” mice and their con-
trol littermates. Similarly, we did not detect significant dif-
ferences in skin HAMP mRNA levels, which were much
lower than in the liver (Figure 1B), while hepcidin levels in
skin lysates were undetectable. Accordingly, the expres-
sion of Fam132b mRNA encoding for erythroferrone, the
erythroid regulator of hepcidin,” was unchanged in both
spleen and bone marrow (Figure 1B and Online
Supplementary Figure S2). Fpn1*"LysCre” mice showed dif-
fuse alopecia with sparing of the head in 100% of both
male and female mice until the fourth week of age (Figure
1A,C). Histological analysis in 3-week old mice showed no
differences between the two genotypes in any organ eval-
uated, with the exception of the increased iron accumula-
tion in spleen and liver macrophages (Online Supplementary
Figure S1) and a moderate/severe and diffuse/multifocal to
coalescing dilatation of hair follicles, which contained rem-
nants of hair shafts and keratin, and slight acanthosis of the
superficial epidermis (Figure 1C). Alopecia gradually disap-
peared and hair re-growth was evident starting 2 weeks
after weaning (Figure 1A), but minor skin alterations were
still detectable in adult Fpn1""LysCre*” mice, which had a
reduced number of hair follicles, multifocal areas of hair
shaft rarefaction and a thin hypodermis with an apparent
increase of adipose tissue (Figure 1D). Taken together,
these results indicate that targeted FPN deletion in
macrophages results in severe alterations of the hair follicle
and transient alopecia.

Alopecia is not related to systemic iron deficiency

In Fpn1""LysCre” mice hair regrowth was not complete
until 3 weeks after weaning, while hemoglobin levels and
hematocrit had already returned to normal after 1 week
(Figure 1A) and at all time-points there was no difference in
serum iron availability between Fpn1*'LysCre* and control
littermates. This suggested that alopecia in Fpn1"*LysCre*
mice was not a local reflection of systemic iron deficiency
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Figure 1. Transient alopecia and anemia are present in Fpn1""LysCre” mice. (A) Hemoglobin (Hb) levels and hematocrit (Hct) in 3- to 6-week (w) old mice (mean +
SEM of 50 mice for each group; ***P<0.0001, **P<0.001). The histogram at the bottom shows the percentage alopecia at different time-points (mean + SEM of
50 mice for each group; ***P<0.0001, **P<0.001 versus Fpn1""LysCre”). (B) Top: Hb levels, Hct, serum iron and transferrin saturation (TS) in 3-, 6-, 12-, and 18-
week old mice (mean + SEM of 50 mice for each group; ***P<0.0001, **P<0.001, *P<0.01). Bottom: hepcidin (HAMP) expression in the liver (solid bars) and skin
(striped bars) and spleen erythroferrone (Fam132b) mRNA levels of 3-, 6-, 12-, and 18-week old mice. mRNA levels were measured by quantitative real time poly-
merase chain reaction and normalized to the housekeeping gene 18S RNA. Data are presented as mean + SEM of 10 mice for each group. (C) Representative appear-
ance of 3-week old Fpn1""LysCre” (left) and Fpn1""LysCre*” (right) mice and representative histology (dorsal area) of the same mice. Magnification 10X, in the inset
20X. (D) Representative histology of the skin (dorsal area) of adult (12-week old) mice. Tissue sections were stained with hematoxylin and eosin. Magnification: 10X.
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but a consequence of iron sequestration in skin
macrophages, ultimately resulting in impaired hair follicle
growth. To further assess this issue, we analyzed hemato-
logic parameters and alopecia after exposure to low iron
diet according to the protocol outlined in Figure 2A. Until
week 5, both Fpn1""LysCre* and control littermates were
anemic, and hemoglobin levels and other hematologic
parameters were always slightly and not significantly
lower in animals lacking macrophage FPN (Figure 2B,C,
Online Supplementary Table S1). Serum iron levels and trans-
ferrin saturation were lower in 3-week old Fpn1""LysCre*
mice than in control littermates, although not statistically
significantly so, but returned to normal levels at 6 weeks
without differences between the two strains (Figure 2C).
Liver hepcidin expression was repressed by the iron-defi-
cient diet, but was not different between Fpnl""LysCre*
mice and their control littermates (Figure 2C). HAMP
mRNA levels in the skin were below the threshold of
detection. A significant increase in erythroferrone expres-
sion was found in Fpn1"'LysCre"" pups at 3 weeks (Figure
2C and Online Supplementary Figure S2), which is indicative
of higher erythropoietic activity. After the introduction of
the normal diet, both hepcidin and erythroferrone expres-
sion returned to normal levels (Figure 2C and Online
Supplementary Figure S2). Mice with loss of macrophage
FPN were grossly affected by diffuse alopecia of the trunk
throughout the period of exposure to the low iron diet,
whereas Fpn1*"LysCre” mice, despite low serum iron avail-
ability, did not develop alopecia (Figure 2B). Remarkably,
alopecia did not appear in Fpn1""LysCre” mice even after
exposure to the iron-deficient diet for 11 weeks. In
Fpn1""LysCre” mice, after reintroduction of a normal diet,
hemoglobin and serum iron returned to normal levels 2
weeks before the restoration of normally haired skin
(Figure 2B,C), thus indicating that alopecia and hypofer-
remia/anemia are not associated. Histological analysis
showed that in Fpn1*"LysCre” mice challenged with the
low iron diet alopecia was associated with severe follicular
keratosis with intraluminal accumulation of keratin and
distorted hair shafts and subsequent dilation of the hair fol-
licles. Conversely, no relevant histopathological changes
were found in the haired skin of the Fpn1*"LysCre” mice
maintained in the same dietary conditions (Figure 2D).
Both in Fpnl1"LysCre” and Fpnl"LysCre” mice main-
tained under iron deprivation conditions for 5 weeks and
subsequently fed a normal diet for 2 weeks, skin histology
showed that hair follicles were in the anagen stage, but in
Fpn1""LysCre” mice hair shafts did not exit the follicular
ostia and follicular keratosis/dilation, increased epidermal
hyperplasia and dermal inflammation were observed
(Figure 2E).

Ferroportin deletion in macrophages leads
to epithelial iron deficiency and decreased
proliferation in cutaneous hair follicles

Since we showed that iron released by macrophages via
FPN supports in vitro cell proliferation,” an important role
for FPN in skin macrophages could be to mediate the
release of sufficient iron in the microenvironment for cell
multiplication. Indeed, confocal microscopy revealed a sig-
nificantly lower expression of the proliferation marker Ki67
in the epithelial cells of the hair bulbs of 3-week old
Fpn1""LysCre” mice (Figure 3). Conversely, in the same
cells we found a strong increase of transferrin receptor
(TfR1) expression, which is indicative of cellular iron dep-

rivation (Figure 3). Notably, F4/80* macrophages, which are
abundant in the skin stroma but with no differences in
number between Fpnl1""LysCre” and Fpnl1""LysCre” mice
(Figure 3), expressed lower levels of both Ki67 and TfR1
but had an increased content of both the L and H subunits
of the iron storage protein ferritin (Figure 3 and Online
Supplementary Figure S3) as compared to epithelial cells.
Qualitative analysis also showed that in Fpnl""LysCre”
mice ferritin is detectable only in epithelial cells (Online
Supplementary Figure S3), whereas in Fpn1"'LysCre* mice
ferritin expression is particularly strong in F4/80°
macrophages. These results suggest that iron retention in
resident macrophages, by starving neighboring hair follicle
cells of iron and hence inhibiting their proliferation, has
detrimental effects on tissue homeostasis.

Ferroportin deletion in macrophages compromises
wound healing

Resident macrophages support parenchymal cells with
trophic signals, particularly under conditions character-
ized by increased cell proliferation, such as during tissue
repair following injury.” To test the role of macrophage-
derived iron in this context, we investigated the wound
healing process after incisional skin damage during the
entire time course of repair, i.e. the early-inflammatory [2
days post injury (dpi)], middle-proliferative (7 dpi), and
late-remodeling phases (12 dpi). We first investigated FPN
expression in FACS-sorted macrophages from wounds; in
Fpn1"LysCre” mice FPN mRNA levels progressively
increased during repair (Figure 4A), suggesting a predomi-
nant role of FPN in the late phases, whereas, as expected,
FPN mRNA was always barely detectable in
Fpn1""LysCre” mice. The analysis of other iron-related
genes showed a rise in the expression of TfR1, which medi-
ates iron uptake, and a decrease of ferritin H subunit during
the middle-late phase of repair in macrophages of
Fpn1""LysCre” mice, but not Fpn1*"LysCre” mice, which is
evidence of iron deposition in these cells (Figure 4A).
Accordingly, histological analysis showed iron accumula-
tion in wound macrophages of Fpn1*"LysCre*" mice (Figure
4B). Hepcidin-dependent FPN modulation should not play
a role in wound healing, as no difference was seen in liver
HAMP  expression between Fpnl""LysCre” and
Fpn1*"LysCre”” mice during wound repair (Online
Supplementary Figure S4A) and HAMP expression in FACS-
sorted macrophages was undetectable. Hepcidin levels in
the wound lysate, which were much lower than in serum,
were not different between Fpnl""LysCre” and
Fpn1""LysCre” mice (Online Supplementary Figure S4B).
Macroscopic analysis of wound size showed that the
process of closure was considerably delayed in
Fpn1*"LysCre” mice than in control littermates, with sig-
nificantly wider lesions at all time points and a lag of 3-5
days at 3 dpi through 12 dpi (Figure 4C). Histological analy-
sis performed according to the criteria described in Online
Supplementary Table S2 supported this observation, as
Fpn1""LysCre” mice displayed a more prolonged inflam-
matory response and delayed granulation tissue formation,
associated with diminished fibroplasia, whereas mononu-
clear cells and granulocytes were unchanged (Figure 4D).

Ferroportin deletion in macrophages has no impact

on leukocyte recruitment and activation in the wound
Given the role of leukocytes in tissue repair,” we evaluat-

ed leukocyte recruitment in our experimental setting.
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Figure 2. Alopecia in Fpn1"'LysCre”" mice is not related to iron deficiency/anemia. (A) Schematic overview of the feeding protocol: pups were fed by dams kept on an
iron-deficient diet for 3 weeks until weaning and then maintained on a low iron diet for another 2 weeks followed by a normal diet. (B) Hemoglobin (Hb) levels and hema-
tocrit (Het) in 3- to 8-week old mice (mean + SEM of 10 mice for each group). The histogram at the bottom shows the degree of alopecia at different time-points.
*%%P<0.0001 versus Fpn1"'LysCre”. (C) Top: Hb levels, Hct, serum iron and transferrin saturation (TS) in 3- to 18-week old mice (mean + SEM of 10 mice for each group;
*%%P<0.0001). Bottom: hepcidin (HAMP) and erythroferrone (Fam132b) mRNA levels in the liver and spleen, respectively, of 3- to 18-week old mice. Expression in 3-
week old mice fed the normal diet is shown in comparison. mRNA levels were measured by quantitative real-time polymerase chain reaction and normalized to the house-
keeping gene 18S RNA. Data are presented as mean + SEM of 10 mice for each group; ***P<0.0001, **P<0.001. (D) Representative histology of the skin (dorsal area)
of 3-week old Fpn1"'LysCre” and Fpn1"'LysCre”" mice maintained on an iron-deficient diet. Magnification 20X. (E) Representative histology of the skin (dorsal region)
after 5 weeks of an iron deficient diet plus 2 weeks of a normal diet. Tissue sections were stained with hematoxylin and eosin. Magnification: 10X; 20X in the insets.
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Neutrophils (Ly6G* cells) and eosinophils (CCR3* cells) ed by the presence or absence of FPN in macrophages.

were abundant at 2 and 7 dpi and decreased thereafter, Macrophages with different functional orientations
whereas an inverse trend was evident for T cells (CD3* have specific roles in the overlapping phases of wound
cells) and macrophages (F4/80° cells), which increased at 12 repair.’” As iron accumulation in macrophages might
dpi (Figure 5A). The accumulation kinetics of these cells, favor the expression of inflammatory mediators."”*****
which are typical of skin wound healing,” were not affect- we evaluated the levels of inflammatory cytokines in
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wound lysates, but did not detect significant differences MHCII'/CD206 M1 macrophages was detected already
between the two mouse lines at any time-point (Online in the middle-proliferative phase, while a significant
Supplementary Figure S5). Since iron accumulation in increase in MHCII/CD206* M2 macrophages was evi-
macrophages of Fpnl1"LysCre” mice could affect the dent only in the late-remodeling phase, but no difference
polarization of these cells during the healing process,”” we was found between Fpnl1""LysCre*” mice and their con-
investigated the distribution of the different polarized trol littermates (Figure 5A). Moreover, we evaluated the
macrophages. As  expected, an increase
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derived macrophages exposed in vitro to polarization
stimuli, but again no difference was observed in markers
for both M1 (iNOS and TNFa) and M2 (Argl and YM1)
macrophages (Figure 5B). The expression of iron-related
genes in bone marrow-derived macrophages of
Fpn1""LysCre” mice mirrored the pattern previously
observed in human polarized macrophages,” with elevat-
ed expression of FPN, TfR1 and the hemoglobin/hapto-
globin complex receptor CD163 in M2 macrophages.
This finding is in line with the prominent expression of
FPN in macrophages during the late phase of repair, when
the M2 cell infiltrate is increased (Figures 4A and SA).
Deletion of macrophage FPN resulted in lower expression
of TfR1 and CD168 transcript levels in M2 macrophages
(Figure 5B), possibly as a consequence of iron accumula-
tion.

Ferroportin deletion in macrophages affects stromal
cells during wound healing

Since FPN deletion in macrophages significantly affect-
ed the wound healing process but iron accumulation in
FPN-deficient macrophages did not alter the inflammato-
ry processes associated with wound healing, we evaluat-
ed whether the defective iron release by FPN-deficient
macrophages affected the biology of surrounding stromal
cells in the wound tissue. Confocal analysis at 7 dpi
showed reduced expression in Fpnl1"'LysCre” mice, as
compared to control littermates, of blood (CD31) and
lymph vessel (Lyve-1) endothelium markers (Figure 6).
This was accompanied by decreased expression of
platelet-derived growth factor receptor-a, a marker of
mesenchymal cells, and lower levels of collagen I and
alpha smooth muscle actin (aSMA), which are markers of
activated fibroblasts and myofibroblasts, respectively
(Figure 6). Moreover, in the absence of macrophage FPN,
surrounding stromal cells were iron-deficient, as indicat-
ed by upregulation of TfR1 expression, and proliferated
less than control counterparts, as shown by decreased
Ki67 expression (Figure 6). Taken together, these results
indicate that the iron retention in macrophages caused by
FPN deletion impairs blood vessel formation and stromal
cell proliferation, leading to delayed skin repair.

Discussion

The role of erythrophagocytic macrophages as a source
of iron for erythropoiesis is well established.”* However,
macrophages may also be involved in iron redistribution
at a local tissue level, thus affecting neighboring cells. We
previously showed that FPN-mediated iron release from
human macrophages supports in vitro cell proliferation.”
In the present study, we showed that a steady supply of
iron released by macrophage FPN is essential for tissue
homeostasis in two conditions, follicular development
and wound healing, which share many similarities,
including fast cell growth rate.® Our study, therefore,
underlines a new iron-related function of macrophages in
tissue homeostasis and regeneration, in line with the
increasing recognition of these cells’ considerable func-
tional polyvalence and trophic role, in addition to estab-
lished immunological functions.” We did not address the
effect of FPN gene deletion in other myeloid cells affected
in the LysM conditional model here adopted as their con-
tribution to iron storage and release is negligible com-

11,13

pared to that of macrophages.

Our findings showing impaired hair follicle growth in
mice with FPN deficiency in macrophages are in line with
the report of similar hair and skin lesions in mice with
altered expression of other proteins of iron metabolism,*"
* although in these other settings the presence of systemic
iron deficiency/anemia did not allow the relative contribu-
tions of circulating iron versus local availability of
macrophage-derived iron to be distinguished. We showed
that the alopecia in mice with loss of macrophage FPN
was not related to limited systemic iron availability, as evi-
denced by the lack of differences in serum iron availability
and the similar hepatic and local hepcidin expression
(Figure 1). Evidence that local iron release from
macrophages, which are abundant in skin tissue (Figure 3),
is more important than systemic iron levels was also pro-
vided by the persistence of alopecia after the return of nor-
mal hemoglobin and body iron levels (Figures 1 and 2),
and by the absence of hair loss in hypoferremic and ane-
mic Fpnl1"LysCre” mice (Figure 2), even when fed an
iron-deficient diet for a long time. In line with the alopecia
and delayed entry of the hair follicle into anagen exhibited
by mice overexpressing H ferritin,* we provide evidence
that iron release from macrophages is required to sustain
the rapid multiplication of hair follicle cells (Figure 3). In
the absence of macrophage FPN, follicle epithelial cells are
iron-deficient, as demonstrated by the increased expres-
sion of TfR1, and have a lower replication rate, as indicat-
ed by reduced Ki67 levels. The discrepancy with the lack
of alopecia in a similar model of macrophage-specific FPN
inactivation reported by Zhang and colleagues™ could be
explained by the different iron content of the standard diet
used (157 ppm versus 232, respectively) and by the differ-
ent genetic backgrounds of the mice. Indeed, the role of
dietary iron absorption, which is more important in mice
than in humans,” in correcting the alopecia was also indi-
cated by the effect of switching to chow diet at weaning.
Alopecia may result from insufficient iron availability
caused by decreased local iron release (this study),
Matriptase-dependent severe systemic iron deficiency™*
(although the role of local FPN was not addressed in those
studies) and iron sequestration in ferritin.* The absence of
alopecia in Fpn1"*LysCre” mice kept on an iron-deficient
diet for almost 3 months suggests that local iron release
may provide iron more directly in a paracrine fashion
when circulating iron levels fall. We conclude that the
essential role of macrophages in hair follicle cycling’ is not
only related to their production of growth stimulators,
such as Wnt,” but also to the ability to supply the growing
tissue with iron. Macrophages are part of the nurturing
niche of stem cells in various tissues,” including tumors.
The results reported here in skin hair follicles raise the
possibility that macrophage-dependent iron provision has
a more general role in different stem cell niches.

We also report here a similar role for macrophage-
derived iron during skin wound healing, a complex tissue
repair process consisting of overlapping phases of inflam-
mation and tissue remodeling in which macrophages play
a key role.” The use of mice lacking FPN selectively in
cells of the myeloid lineage allowed us to define the role
of macrophage iron in wound healing in the absence of
the systemic iron overload and large local iron accumula-
tion present in other models.”” In the present setting, the
disruption of iron export from local macrophages delayed
wound healing, apparently by preventing neighboring



mesenchymal and stromal cells from receiving the iron
supply necessary for growth/differentiation. In line with
the higher FPN expression in M2 than in Ml
macrophages,"” the lack of macrophage FPN exerts its
major effects in the middle-late phase of repair when the
M1 to M2 switch occurs. Indeed, in the late stages, nor-
mal M2 skin macrophages export iron through enhanced
FPN expression, whereas FPN-deficient macrophages
accumulate iron with concomitant induction of ferritin
and repression of TfR1 (Figure 4A). The lower fibrosis
score (Figure 4D) and the decreased expression of colla-
gen-1 and aSMA (Figure 6) show that the stromal compo-
nent is compromised, as the absence of macrophage FPN
resulted in iron deprivation and impaired proliferation of
stromal cells (Figure 6). In this context, fibroblasts may
not receive enough iron, which can be among the
paracrine factors secreted by M2 macrophages to favor
cell multiplication.” A detrimental effect on collagen syn-
thesis and assembly, which require iron-dependent prolyl
hydroxylases,” or other iron-dependent functions such as
dihydroxy-docosahexaenoic acid production,” may con-
tribute to defective repair.

Our results also show that macrophage iron is essential
for the development of the vascular network during tis-
sue healing, as both lymphatic and blood vessels were
reduced (Figure 6). Although the decrease of vascular
structure caused by macrophage depletion was previous-
ly ascribed to the reduced production of vascular
endothelial growth factor and transforming growth fac-
tor-B,” the latter being also involved in extracellular matrix
deposition and aSMA expression,” in our experimental
model the levels of these growth factors were unchanged
(Online Supplementary Figure S5). Similarly, given that
hemoglobin levels of adult Fpnl1""LysCre” mice were
normal, defective oxygenation as a possible factor
involved in impaired vascularization can be ruled out.
Therefore, our results showing reduced neovessel densi-
ty, reduced granulation tissue formation and decreased
fibrosis in the absence of macrophage iron release, in the
face of unchanged levels of prominent angiogenic and
fibrogenic factors, such as vascular endothelial growth
factor and transforming growth factor-f, support the rel-
evance of the trophic role of macrophage-derived iron in
the wound milieu.

Understanding the role of iron in macrophage produc-
tion of inflammatory molecules has been hampered by
contradictory findings. An increased inflammatory
response was found in iron-depleted macrophages,” but
not in equally iron-deficient macrophages from HFE”
mice,” and other studies showed that iron levels correlate
positively with the synthesis of pro-inflammatory
cytokines.”* In addition, a pro-inflammatory state has
been shown in macrophages and macrophage/microglia
cells exposed to heme or iron”” and in hemorrhagic areas
within tumors.” Similarly, decreased iron release from
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macrophages, associated with pro-inflammatory activa-
tion and defective M2 polarization, impaired wound
healing in chronic venous leg ulcers.” Conversely, we
found that iron retention in macrophages has no impact
on leukocyte recruitment and activation as well as
macrophage polarization (Figure 5 and Ounline
Supplementary Figure S5). Moreover, in vitro polarized bone
marrow-derived macrophages from the two mouse lines
did not show differential expression of M1 and M2 mark-
ers (Figure 5B). Therefore, in our model, iron accumula-
tion does not exacerbate the pro-inflammatory pheno-
type of wound healing-associated macrophages, in keep-
ing with a recent study showing that iron did not increase
M1 polarization of RAW264.7 macrophages.” The con-
flicting results may be related to the different experimen-
tal models, the heterogeneity of macrophages and the
exposure to different iron sources, such as heme iron
which is highly toxic.* In the absence of FPN,
macrophages from Fpn1""LysCre” mice accumulate iron
in ferritin, which increases less than 2-fold (Figure 4A),
but iron deposition seems less massive than in conditions
such as chronic ulcers,” in which iron content may
increase 20-fold,” or hemolysis.”* In our experimental
setting iron accumulation may, therefore, be insufficient
to interfere with the M1/M2 switch and favor a pro-
inflammatory state. A recent study demonstrated that
FPN downregulation in macrophages impaired skeletal
muscle regeneration after injury,” but the effect of
increased iron accumulation on the inflammatory profile
of macrophages was not addressed.

In conclusion, the results of our study indicate that local
macrophage FPN, by supplying iron to cells in the
microenvironment, affects both the physiological context
of follicular anagen and the pathophysiological context of
wound healing. In its absence, stromal cells are iron-defi-
cient and their proliferation is impaired (Figures 3 and 6).
The importance of local iron recycling is underlined by
the lack of changes in hepatic and skin hepcidin. A similar
requirement for iron provided locally by macrophages
has been described for the repair of skeletal muscle cells,
in which iron retention in macrophages, by impairing
myoblast proliferation, results in smaller myofibers.” Iron
should, therefore, be added to the list of trophic media-
tors produced locally by macrophages that stimulate the
growth, differentiation and activity of neighboring
parenchymal and stromal cells in order to maintain tissue
homeostasis or repair.
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