Concomitant WT1 mutations predict poor prognosis in acute myeloid leukemia patients with double mutant CEBPA

Feng-Ming Tien,1,2,3 Hsin-An Hou,1 Jih-Luh Tang,1,3 Yuan-Yeh Kuo,4 Chien-Yuan Chen,1 Cheng-Hong Tsai,6,3 Ming Yao,1 Chien-Ting Lin,7,3 Chi-Cheng Li,6,3 Shang-Yi Huang,5 Bor-Sheng Ko,1 Szu-Chun Hsu,3 Shiang-Ju Wu,1 Jia-Hau Liu,6,3 Sheng-Chieh Chou,1 Woei Tsay,1 Mei-Hsuan Tseng,1 Ming-Chih Liu,6 Chia-Wen Liu,6 Liang-In Lin,7 Wen-Chien Chou6,5 and Hwei-Fang Tien1

1Department of Internal Medicine, Division of Hematology, National Taiwan University Hospital; 2Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University; 3Tai-Cheng Stem Cell Therapy Center, National Taiwan University; 4Graduate Institute of Oncology, College of Medicine, National Taiwan University; Departments of 1Laboratory Medicine and 4Pathology, National Taiwan University Hospital and 7Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan

Correspondence: hsinanhou@ntu.edu.tw/hftien@ntu.edu.tw
doi:10.3324/haematol.2018.189043
Supplementary Table 1. Clinical characteristics of AML patients according to the status of *CEBPA* mutations

<table>
<thead>
<tr>
<th>Variables</th>
<th>CEBP wt N=654</th>
<th>CEBP sm N=33</th>
<th>CEBP dm N=69</th>
<th>P value<sup>c</sup></th>
<th>P value<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td>0.685</td>
<td>0.909</td>
</tr>
<tr>
<td>Male</td>
<td>372</td>
<td>20</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>282</td>
<td>13</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, years<sup>a</sup></td>
<td>49 (23-82)</td>
<td>52 (18-85)</td>
<td>40 (17-90)</td>
<td><0.0001</td>
<td>0.038</td>
</tr>
<tr>
<td>Lab<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC (k/μL)</td>
<td>6.39 (0.3-212.7)</td>
<td>37.3 (0.98-271.5)</td>
<td>44.2 (2.41-387.4)</td>
<td><0.0001</td>
<td>0.739</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>8.1 (4.2-13.9)</td>
<td>8.2 (4.5-10.9)</td>
<td>8.8 (3-13.6)</td>
<td>0.006</td>
<td>0.045</td>
</tr>
<tr>
<td>Platelet (k/μL)</td>
<td>28 (5-122)</td>
<td>28 (10-712)</td>
<td>41 (5-204)</td>
<td>0.077</td>
<td>0.707</td>
</tr>
<tr>
<td>PB Blast (k/μL)</td>
<td>0.77 (0-134.0)</td>
<td>20.9 (0.21-260.6)</td>
<td>29.2 (0.72-371.9)</td>
<td>0.006</td>
<td>0.634</td>
</tr>
<tr>
<td>FAB<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>18 (2.8)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0.403</td>
<td>-</td>
</tr>
<tr>
<td>M1</td>
<td>114 (17.6)</td>
<td>11 (33.3)</td>
<td>39 (56.5)</td>
<td><0.0001</td>
<td>0.028</td>
</tr>
<tr>
<td>M2</td>
<td>213 (32.4)</td>
<td>17 (51.5)</td>
<td>27 (39.1)</td>
<td>0.259</td>
<td>0.237</td>
</tr>
<tr>
<td>M3</td>
<td>63 (9.6)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>M4</td>
<td>180 (27.5)</td>
<td>3 (9.1)</td>
<td>3 (4.3)</td>
<td><0.0001</td>
<td>0.386</td>
</tr>
<tr>
<td>M5</td>
<td>30 (4.6)</td>
<td>1 (3.0)</td>
<td>0 (0)</td>
<td>0.099</td>
<td>0.324</td>
</tr>
<tr>
<td>M6</td>
<td>26 (4.0)</td>
<td>1 (3.0)</td>
<td>0 (0)</td>
<td>0.162</td>
<td>0.324</td>
</tr>
<tr>
<td>Undetermined</td>
<td>10 (1.5)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0.610</td>
<td>-</td>
</tr>
<tr>
<td>Cytogenetics<sup>b</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Favorable</td>
<td>146 (23.1)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td><0.0001</td>
<td>-</td>
</tr>
<tr>
<td>Intermediate</td>
<td>392 (61.9)</td>
<td>30 (96.8)</td>
<td>67 (98.5)</td>
<td><0.0001</td>
<td>0.325</td>
</tr>
<tr>
<td>Unfavorable</td>
<td>95 (15.0)</td>
<td>1 (3.2)</td>
<td>1 (1.5)</td>
<td>0.002</td>
<td>0.545</td>
</tr>
<tr>
<td>2016 WHO classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recurrent geneic abnormalities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t(8;21)</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0.013</td>
<td>-</td>
</tr>
<tr>
<td>inv(16)</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0.162</td>
<td>-</td>
</tr>
<tr>
<td>APL</td>
<td>63</td>
<td>0</td>
<td>0</td>
<td>0.009</td>
<td>-</td>
</tr>
<tr>
<td>t(9;11)</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>>0.999</td>
<td>-</td>
</tr>
<tr>
<td>t(6;9)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>>0.999</td>
<td>-</td>
</tr>
<tr>
<td>Inv(3)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>>0.999</td>
<td>-</td>
</tr>
<tr>
<td>t(1;22)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CEBPA<sup>dm</sup></td>
<td>0</td>
<td>0</td>
<td>69</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>BCR-ABL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>>0.999</td>
<td>-</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Median (range)</td>
<td>Number of patients (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>---------------</td>
<td>------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NPM1</td>
<td>132</td>
<td>8</td>
<td>0</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
<tr>
<td>RUNX1</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0.004</td>
<td>-</td>
</tr>
<tr>
<td>Myelodysplasia-related change</td>
<td>92</td>
<td>1</td>
<td>0</td>
<td>0.001</td>
<td>0.324</td>
</tr>
<tr>
<td>NOS</td>
<td>191</td>
<td>24</td>
<td>0</td>
<td><0.0001</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

2017 ELN classification

Favorable

- t(8;21) 57 0 0 0.011 < 0.0001
- inv(16) 27 0 0 0.099 -
- *NPM1*+/*FLT3-ITD- 78 4 0 0.002 0.01
- *CEBPA*^sm^ 0 0 69 < 0.0001 < 0.0001

Intermediate

- *NPM1*+/*FLT3-ITD+ 53 4 0 0.014 0.01
- t(9;11) 9 0 0 > 0.999 -
- Other cytogenetics 107 17 0 < 0.0001 < 0.0001

Unfavorable

- t(6;9) 3 0 0 > 0.999 -
- t(v;11q23) 11 1 0 0.612 0.324
- t(9;22) 1 0 0 > 0.999 -
- inv(3) 3 0 0 > 0.999 -
- -5/-7 19 0 0 0.384 -
- complex 72 1 0 0.004 0.324
- *NPM1*-//*FLT3-ITD+ 50 1 0 0.01 0.324
- *RUNX1* 60 0 0 0.009 -
- *ASXL1* 35 4 0 0.04 0.01
- *TP53* 10 1 0 0.610 0.324

Abbreviations: APL, acute promyelocytic leukemia; *CEBPA*^sm^, *CEBPA* single mutation; *CEBPA*^dm^, *CEBPA* double mutation; NOS, not otherwise specified; PB, peripheral blood;

a Median (range)

b Number of patients (%)

c *CEBPA*^sm^ patients vs *CEBPA* wild-type patients

d *CEBPA*^sm^ patients vs *CEBPA*^dm^ patients
Supplementary Table 2. Characterization of the mutations in the CEBPA coding region

<table>
<thead>
<tr>
<th>UPN</th>
<th>Age/Sex</th>
<th>Karyotype</th>
<th>N terminal DNA change</th>
<th>N terminal Protein change</th>
<th>C terminal DNA change</th>
<th>C terminal Protein change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75M</td>
<td>CN</td>
<td>c.324C>G</td>
<td>p.Y108X</td>
<td>c.992T>G</td>
<td>p.L331R</td>
</tr>
<tr>
<td>2</td>
<td>48M</td>
<td>CN</td>
<td>c.196_197insGT</td>
<td>p.A66GfsX95</td>
<td>c.925_926insTGG</td>
<td>p.V308_E309insV</td>
</tr>
<tr>
<td>3</td>
<td>32F</td>
<td>CN</td>
<td>c.264_303delins20</td>
<td>p.Q88HfsX75</td>
<td>c.920_921ins9</td>
<td>p.R306_N307insKQR</td>
</tr>
<tr>
<td>4</td>
<td>41F</td>
<td>CN</td>
<td>c.243_244insGTG</td>
<td>p.F82LfsX27</td>
<td>c.930_931insAGC</td>
<td>p.T310_Q311insT</td>
</tr>
<tr>
<td>5</td>
<td>90M</td>
<td>CN</td>
<td>c.68_69insC</td>
<td>p.H24AfsX64</td>
<td>c.772_787del</td>
<td>p.A258SfsX55</td>
</tr>
<tr>
<td>13</td>
<td>68F</td>
<td>CN</td>
<td>c.229_235del</td>
<td>p.F77PfsX81</td>
<td>c.916_917insAGC</td>
<td>p.Q305_R306insQ</td>
</tr>
<tr>
<td>14</td>
<td>31F</td>
<td>CN</td>
<td>c.50_56del</td>
<td>p.H18RfsX140</td>
<td>c.947_948ins36</td>
<td>p.L315_E316ins12</td>
</tr>
<tr>
<td>16</td>
<td>64M</td>
<td>CN</td>
<td>c.68_69insCCCG</td>
<td>p.H24PfsX85</td>
<td>c.930_931ins45</td>
<td>p.T310_Q311ins15</td>
</tr>
<tr>
<td>18</td>
<td>49F</td>
<td>CN</td>
<td>c.196_197del</td>
<td>p.A66LfsX41</td>
<td>c.943_944ins3</td>
<td>p.L315_E316insL</td>
</tr>
<tr>
<td>19</td>
<td>40M</td>
<td>CN</td>
<td>c.178_182del</td>
<td>p.T60HfsX46</td>
<td>c.895_942dup</td>
<td>p.Q311_Q312ins16</td>
</tr>
<tr>
<td>22</td>
<td>32F</td>
<td>CN</td>
<td>c.180_189del</td>
<td>p.I62AfsX95</td>
<td>c.925_942del</td>
<td>p.E309_V314del</td>
</tr>
<tr>
<td>24</td>
<td>55M</td>
<td>CN</td>
<td>c.134del</td>
<td>p.P45HfsX115</td>
<td>c.916_917insAGC</td>
<td>p.Q305_R306insQ</td>
</tr>
<tr>
<td>27</td>
<td>69M</td>
<td>NM</td>
<td>c.247del</td>
<td>p.Q83SfsX77</td>
<td>c.961A>TCAT</td>
<td>p.N321>SY</td>
</tr>
<tr>
<td>30</td>
<td>31F</td>
<td>del(9)(q22q34)</td>
<td>c.204_205insC</td>
<td>p.D69RfsX39</td>
<td>c.944_945insCAC</td>
<td>p.L315_E316insT</td>
</tr>
<tr>
<td>32</td>
<td>45F</td>
<td>complex</td>
<td>c.262C>T</td>
<td>p.Q88X</td>
<td>c.936_937insCAA</td>
<td>p.Q312_K313insQ</td>
</tr>
<tr>
<td>33</td>
<td>81F</td>
<td>CN</td>
<td>c.318del</td>
<td>p.F106LfsX54</td>
<td>c.921_977dup</td>
<td>p.307_325dup</td>
</tr>
<tr>
<td>34</td>
<td>43M</td>
<td>CN</td>
<td>c.183_184insCTCC</td>
<td>p.i62VfsX47</td>
<td>c.917_934del18</td>
<td>p.R306_Q311del</td>
</tr>
<tr>
<td>35</td>
<td>50M</td>
<td>CN</td>
<td>c.68_69insC</td>
<td>p.H24AfsX84</td>
<td>c.933_934insTTC</td>
<td>p.Q311_Q312insF</td>
</tr>
<tr>
<td>36</td>
<td>17F</td>
<td>CN</td>
<td>c.326_327insC</td>
<td>p.A111RfsX59</td>
<td>c.909_944dup</td>
<td>p.L315_E316ins12</td>
</tr>
<tr>
<td>38</td>
<td>59M</td>
<td>CN</td>
<td>c.183del</td>
<td>p.I62SfsX98</td>
<td>c.907_912dup</td>
<td>p.K304_Q305insAK</td>
</tr>
<tr>
<td>40</td>
<td>29M</td>
<td>CN</td>
<td>c.64_65del</td>
<td>p.P23AfsX84</td>
<td>c.939_940insAAG</td>
<td>p.K313_L315insV</td>
</tr>
<tr>
<td>41</td>
<td>50M</td>
<td>CN</td>
<td>c.247del</td>
<td>p.Q83SfsX77</td>
<td>c.939_940insAAG</td>
<td>p.K313_L315insV</td>
</tr>
<tr>
<td>42</td>
<td>54M</td>
<td>CN</td>
<td>c.206_207AC>T</td>
<td>p.D69VfsX77</td>
<td>c.939_940insAAG</td>
<td>p.K313_L315insV</td>
</tr>
<tr>
<td>43</td>
<td>36M</td>
<td>CN</td>
<td>c.177_186del10</td>
<td>p.I62AfsX95</td>
<td>c.907_912dup</td>
<td>p.K304_Q305insAK</td>
</tr>
<tr>
<td>44</td>
<td>19F</td>
<td>CN</td>
<td>c.68_69insC</td>
<td>p.H24AfsX84</td>
<td>c.934_936dup</td>
<td>p.Q312_K313insQ</td>
</tr>
<tr>
<td>45</td>
<td>38F</td>
<td>CN</td>
<td>c.129del</td>
<td>p.A111RfsX59</td>
<td>c.929_930insTCT</td>
<td>p.T310_Q311insL</td>
</tr>
<tr>
<td>46</td>
<td>73F</td>
<td>CN</td>
<td>c.213_214insCACCG</td>
<td>p.A72HfsX90</td>
<td>c.914A>C</td>
<td>p.Q305P</td>
</tr>
<tr>
<td>47</td>
<td>34M</td>
<td>CN</td>
<td>c.201_202insCTAC</td>
<td>p.I68LfsX41</td>
<td>c.907_915del</td>
<td>p.A303_Q305del</td>
</tr>
<tr>
<td>50</td>
<td>59M</td>
<td>CN</td>
<td>c.178_179insCC</td>
<td>p.S61LfsX100</td>
<td>c.912_913insTTG</td>
<td>p.K304_Q305insL</td>
</tr>
<tr>
<td>51</td>
<td>37M</td>
<td>CN</td>
<td>c.247del</td>
<td>p.Q83SfsX77</td>
<td>c.904_906dup</td>
<td>p.K302_A303insK</td>
</tr>
<tr>
<td>52</td>
<td>36F</td>
<td>CN</td>
<td>c.177_186del10</td>
<td>p.I62AfsX95</td>
<td>c.921_936del</td>
<td>p.N307_Q312del</td>
</tr>
<tr>
<td>54</td>
<td>40M</td>
<td>CN</td>
<td>c.247del</td>
<td>p.Q83SfsX77</td>
<td>c.937_941delinsCA</td>
<td>p.K313_V314delinsQ</td>
</tr>
<tr>
<td>55</td>
<td>29F</td>
<td>CN</td>
<td>c.287_311insCTAC</td>
<td>p.I68LfsX41</td>
<td>c.907_915del</td>
<td>p.A303_Q305del</td>
</tr>
<tr>
<td>56</td>
<td>35M</td>
<td>CN</td>
<td>c.238_239insCTAC</td>
<td>p.I68LfsX41</td>
<td>c.907_915del</td>
<td>p.A303_Q305del</td>
</tr>
<tr>
<td>60</td>
<td>18M</td>
<td>CN</td>
<td>c.134del</td>
<td>p.P45HfsX115</td>
<td>c.944_945insGTT</td>
<td>p.L315_E316insV</td>
</tr>
<tr>
<td>61</td>
<td>32M</td>
<td>CN</td>
<td>c.64del</td>
<td>p.P23RfsX137</td>
<td>c.939_940insAAG</td>
<td>p.K313_V314insK</td>
</tr>
<tr>
<td>63</td>
<td>34M</td>
<td>del(9)(q13q32)</td>
<td>c.284_285ins10</td>
<td>p.G96CfsX15</td>
<td>c.916_917insAGC</td>
<td>p.Q305_R306insQ</td>
</tr>
<tr>
<td>65</td>
<td>22F</td>
<td>sp: del(9q)</td>
<td>c.70_71insC</td>
<td>p.H24AfsX84</td>
<td>c.911_928del</td>
<td>p.K304_E309del</td>
</tr>
<tr>
<td>UPN</td>
<td>Age</td>
<td>Sex</td>
<td>sp.</td>
<td>cDNA</td>
<td>Protein</td>
<td>cDNA</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
</tbody>
</table>

Abbreviations: CN, cytogenetically normal; NM, no mitosis; UPN, unique patient number
Supplementary Table 3. Additional mutations in the CEBPAdm patients

<table>
<thead>
<tr>
<th>UPN</th>
<th>Gene</th>
<th>Protein change</th>
<th>UPN</th>
<th>Gene</th>
<th>Protein change</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>RUNX1</td>
<td>R271K</td>
<td>36</td>
<td>FLT3</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>ASXL1</td>
<td>G646WfsX12</td>
<td>38</td>
<td>GATA2</td>
<td>A318V</td>
</tr>
<tr>
<td></td>
<td>SRSF2</td>
<td>P95L</td>
<td>39</td>
<td>GATA2</td>
<td>A318T</td>
</tr>
<tr>
<td></td>
<td>TET2</td>
<td>Y1628X/H1219N</td>
<td></td>
<td>KIT</td>
<td>D816V</td>
</tr>
<tr>
<td></td>
<td>TP53</td>
<td>G240E/R209Q</td>
<td>40</td>
<td>FLT3</td>
<td>ITD</td>
</tr>
<tr>
<td>5</td>
<td>ASXL1</td>
<td>G646WfsX12</td>
<td>41</td>
<td>GATA2</td>
<td>G320V</td>
</tr>
<tr>
<td></td>
<td>GATA2</td>
<td>R330Q</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>GATA2</td>
<td>T354M</td>
<td>42</td>
<td>GATA2</td>
<td>A318G</td>
</tr>
<tr>
<td></td>
<td>FLT3</td>
<td>ITD</td>
<td>43</td>
<td>GATA2</td>
<td>L321F</td>
</tr>
<tr>
<td>7</td>
<td>TET2</td>
<td>G1275E</td>
<td>44</td>
<td>GATA2</td>
<td>G320A</td>
</tr>
<tr>
<td>8</td>
<td>TET2</td>
<td>S1586X</td>
<td>45</td>
<td>FLT3</td>
<td>TKD</td>
</tr>
<tr>
<td>9</td>
<td>FLT3</td>
<td>ITD</td>
<td>46</td>
<td>SF3B1</td>
<td>K700E</td>
</tr>
<tr>
<td>12</td>
<td>FLT3</td>
<td>ITD</td>
<td>47</td>
<td>TET2</td>
<td>R1216X, W1198X</td>
</tr>
<tr>
<td>14</td>
<td>FLT3</td>
<td>ITD</td>
<td>48</td>
<td>NRM2A</td>
<td>R882H</td>
</tr>
<tr>
<td>15</td>
<td>GATA2</td>
<td>A318V</td>
<td>49</td>
<td>GATA2</td>
<td>R308P</td>
</tr>
<tr>
<td></td>
<td>NRAS</td>
<td>G12D</td>
<td>50</td>
<td>WT1</td>
<td>R369G</td>
</tr>
<tr>
<td>17</td>
<td>TET2</td>
<td>R550X, W1847X</td>
<td>51</td>
<td>GATA2</td>
<td>R307Q</td>
</tr>
<tr>
<td></td>
<td>U2AF1</td>
<td>S34F</td>
<td>52</td>
<td>NRAS</td>
<td>G13D</td>
</tr>
<tr>
<td>19</td>
<td>GATA2</td>
<td>L321F</td>
<td>53</td>
<td>GATA2</td>
<td>L321H, N317H</td>
</tr>
<tr>
<td>20</td>
<td>GATA2</td>
<td>A318T</td>
<td>54</td>
<td>WT1</td>
<td>K399fsX448</td>
</tr>
<tr>
<td>21</td>
<td>GATA2</td>
<td>K324E</td>
<td>24</td>
<td>WT1</td>
<td>P355C</td>
</tr>
<tr>
<td>23</td>
<td>DNMT3A</td>
<td>P731L</td>
<td>25</td>
<td>GATA2</td>
<td>A318V</td>
</tr>
<tr>
<td></td>
<td>FLT3</td>
<td>ITD</td>
<td>26</td>
<td>TET2</td>
<td>R330L</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td>TET2</td>
<td>L668YfsX32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td>GATA2</td>
<td>T387_G392del</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29</td>
<td>WT1</td>
<td>N381fsX450</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td>NRAS</td>
<td>G12D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31</td>
<td>WT1</td>
<td>D377fsX384</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>34</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>52</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>55</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>56</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene</td>
<td>Mutation</td>
<td>Chromosome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUNX1</td>
<td>K110Q</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT1</td>
<td>K399fsX400</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT1</td>
<td>Y402X</td>
<td>63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLT3</td>
<td>ITD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDH1</td>
<td>R132H</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLT3</td>
<td>TKD</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FLT3</td>
<td>TKD</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GATA2</td>
<td>A318T</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRAS</td>
<td>G320V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRAS</td>
<td>Q61L</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRAS</td>
<td>Q61R</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Table 4. Prognostic factors for OS and DFS in total AML patients

<table>
<thead>
<tr>
<th></th>
<th>Overall survival</th>
<th></th>
<th>Disease-free survival</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Multivariate</td>
<td>RR (CI)</td>
<td>Multivariate</td>
<td>RR (CI)</td>
</tr>
<tr>
<td></td>
<td>P value</td>
<td></td>
<td>P value</td>
<td></td>
</tr>
<tr>
<td>Age<sup>a</sup></td>
<td><0.0001</td>
<td>1.773 (1.368-2.296)</td>
<td>0.003</td>
<td>1.435 (1.131-1.820)</td>
</tr>
<tr>
<td>WBC<sup>b</sup></td>
<td><0.0001</td>
<td>1.932 (1.471-2.537)</td>
<td><0.0001</td>
<td>1.757 (1.371-2.252)</td>
</tr>
<tr>
<td>Cytogenetics<sup>c</sup></td>
<td><0.0001</td>
<td>2.923 (2.014-4.242)</td>
<td><0.0001</td>
<td>2.506 (1.763-3.563)</td>
</tr>
<tr>
<td>CEBPA<sup>d</sup></td>
<td>0.002</td>
<td>0.420 (0.246-0.718)</td>
<td>0.006</td>
<td>0.544 (0.351-0.842)</td>
</tr>
<tr>
<td>NPM1+/FLT3-ITD<sup>d</sup></td>
<td><0.0001</td>
<td>0.389 (0.232-0.652)</td>
<td>0.002</td>
<td>0.476 (0.300-0.753)</td>
</tr>
<tr>
<td>ASXL1</td>
<td>0.970</td>
<td>0.992 (0.653-1.507)</td>
<td>0.634</td>
<td>1.097 (0.749-1.608)</td>
</tr>
<tr>
<td>TP53</td>
<td>0.016</td>
<td>1.929 (1.129-3.295)</td>
<td>0.260</td>
<td>1.364 (0.795-2.339)</td>
</tr>
<tr>
<td>RUNX1</td>
<td>0.556</td>
<td>1.129 (0.753-1.694)</td>
<td>0.287</td>
<td>1.220 (0.846-1.758)</td>
</tr>
<tr>
<td>IDH2</td>
<td>0.015</td>
<td>0.577 (0.372-0.897)</td>
<td>0.058</td>
<td>0.691 (0.471-1.013)</td>
</tr>
<tr>
<td>DNMT3A</td>
<td>0.001</td>
<td>1.851 (1.307-2.621)</td>
<td>0.006</td>
<td>1.581 (1.144-2.185)</td>
</tr>
<tr>
<td>SF</td>
<td><0.0001</td>
<td>2.127 (1.405-3.220)</td>
<td><0.0001</td>
<td>2.159 (1.473-3.165)</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; RR, relative risk; SF, splicing factors, including SF3B1, SRSF2, U2AF1; WBC, white blood cell.

^aAge ≥50 relative to age <50 (the reference)

^bWBC greater than 50,000/μl vs. less than 50,000/μl.

^cUnfavorable cytogenetics vs. others.

^dNPM1+/FLT3-ITD− vs. other subtypes.
Supplementary Table 5. Clinical characteristics of CEBPAdm AML patients according to the status of WT1 mutationsa

<table>
<thead>
<tr>
<th>Variables</th>
<th>WT1 mutated</th>
<th>WT1 wild-type</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N=8</td>
<td>N=60</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td>>0.999</td>
</tr>
<tr>
<td>Male</td>
<td>5</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>3</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Age, yearsb</td>
<td>49 (28-69)</td>
<td>38.5 (17-90)</td>
<td>0.397</td>
</tr>
<tr>
<td>Labb</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC (k/μL)</td>
<td>127.3 (3.3-387.4)</td>
<td>36.83 (2.41-380.2)</td>
<td>0.077</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>7.1 (3.0-13.6)</td>
<td>9.0 (5.7-12.7)</td>
<td>0.308</td>
</tr>
<tr>
<td>Platelet (k/μL)</td>
<td>43.5 (10-54)</td>
<td>40.5 (5-204)</td>
<td>0.761</td>
</tr>
<tr>
<td>PB Blast (k/μL)</td>
<td>74.0 (2.95-371.9)</td>
<td>17.3 (0.72-354.0)</td>
<td>0.094</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>1369 (437-7747)</td>
<td>1037 (375-11329)</td>
<td>0.381</td>
</tr>
<tr>
<td>FABc</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M0</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>M1</td>
<td>5 (62.5)</td>
<td>34 (56.7)</td>
<td>>0.999</td>
</tr>
<tr>
<td>M2</td>
<td>3 (37.5)</td>
<td>23 (38.3)</td>
<td>>0.999</td>
</tr>
<tr>
<td>M3</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>M4</td>
<td>0</td>
<td>3 (5.0)</td>
<td>>0.999</td>
</tr>
<tr>
<td>M5</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>M6</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>Induction Responsed</td>
<td>7</td>
<td>54</td>
<td>0.140</td>
</tr>
<tr>
<td>Complete Resonse</td>
<td>5 (71.4)</td>
<td>50 (92.5)</td>
<td></td>
</tr>
<tr>
<td>Relapse</td>
<td>4 (80.0)</td>
<td>17 (34.0)</td>
<td>0.047</td>
</tr>
</tbody>
</table>

Abbreviation: PB, peripheral blood

a WT1 mutation data was available in 68 of 69 CEBPAdm patients.

b Median (range)

c Number of patients (%)

d Only the 61 patients who received conventional intensive induction chemotherapy and then consolidation chemotherapy if CR was achieved, as mentioned in the text, were included in the analysis.
Supplementary Table 6. Sequential studies of WT1 mutations in AML patients

<table>
<thead>
<tr>
<th>UPN</th>
<th>Date</th>
<th>Status</th>
<th>WT1 mutation AA change</th>
<th>Mutation burden</th>
<th>Other mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>2011/2/7</td>
<td>Initial</td>
<td>P355C</td>
<td>33.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011/4/26</td>
<td>CR1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2011/11/23</td>
<td>Relapse</td>
<td>P355C</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2005/5/20</td>
<td>Initial</td>
<td>D377fsX384</td>
<td>11.71</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2005/6/22</td>
<td>CR1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2006/5/16</td>
<td>Relapse</td>
<td>D377fsX384</td>
<td>61.55</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2007/7/9</td>
<td>Initial</td>
<td>Y402X</td>
<td>47.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007/9/11</td>
<td>CR1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>2000/7/27</td>
<td>Initial</td>
<td>-</td>
<td>-</td>
<td>NPM1</td>
</tr>
<tr>
<td></td>
<td>2000/11/10</td>
<td>CR1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2001/7/17</td>
<td>Relapse</td>
<td>D379fsX386</td>
<td>20.7</td>
<td>NPM1</td>
</tr>
<tr>
<td>71</td>
<td>2002/4/18</td>
<td>Initial</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2002/5/13</td>
<td>CR1</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2002/11/19</td>
<td>Relapse</td>
<td>R471T</td>
<td>38.3</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1995/6/16</td>
<td>Initial</td>
<td>-</td>
<td>-</td>
<td>NRAS, FLT3-ITD</td>
</tr>
<tr>
<td></td>
<td>1996/6/3</td>
<td>CR1</td>
<td>-</td>
<td>-</td>
<td>NRAS, FLT3-ITD</td>
</tr>
<tr>
<td></td>
<td>1996/11/15</td>
<td>Relapse</td>
<td>H465Y</td>
<td>41.6</td>
<td>NRAS, FLT3-ITD</td>
</tr>
</tbody>
</table>

aOnly patients with WT1 mutation at diagnosis, relapse or both are shown and those without the mutation at both diagnosis and relapse are not shown.
Supplementary Table 7. Prognostic impact of concomitant mutations in CEBPAdm patients

<table>
<thead>
<tr>
<th></th>
<th>No. of patients</th>
<th>CR1 (%)</th>
<th>Relapse (%)</th>
<th>Relapse in patients with C/T alone (%)</th>
<th>CR2 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total pts</td>
<td>62</td>
<td>56 (90.2)</td>
<td>21 (37.5)</td>
<td>21/46 (45.6)</td>
<td>14/21 (66.7)</td>
</tr>
<tr>
<td>GATA2</td>
<td>21</td>
<td>20 (95.2)</td>
<td>6 (30.0)</td>
<td>6/16 (37.5)</td>
<td>5/6 (83.3)</td>
</tr>
<tr>
<td>FLT3-ITD</td>
<td>8</td>
<td>6 (75.0)</td>
<td>1 (16.7)</td>
<td>1/3 (33.3)</td>
<td>1/1 (100)</td>
</tr>
<tr>
<td>NRAS</td>
<td>9</td>
<td>8 (88.9)</td>
<td>2 (25.0)</td>
<td>2/3 (67.7)</td>
<td>2/2 (100)</td>
</tr>
<tr>
<td>TET2</td>
<td>7</td>
<td>6 (85.7)</td>
<td>1 (16.7)</td>
<td>1/6 (16.7)</td>
<td>1/1 (100)</td>
</tr>
<tr>
<td>WT1</td>
<td>7</td>
<td>5 (71.4)</td>
<td>4 (80.0)*</td>
<td>4/4 (100)*</td>
<td>1/4 (25)</td>
</tr>
</tbody>
</table>

Abbreviations: C/T, chemotherapy; CR, complete remission

*denotes statistically significance compared to those without the mutation (P<0.05)
Supplementary Figure 1.
Kaplan-Meier plots for (A) OS and (B) DFS in CEBPAdm patients according to transplantation or not in first CR

(A)
Supplementary Figure 2.

Kaplan-Meier plots for (A) OS and (B) DFS according to the status of different concomitant mutations

(A)
Wild-type, n=54

FLT3-ITD, n=8

P=0.578

Wild-type, n=37

GATA2 mutation, n=21

P=0.078

Wild-type, n=53

NRAS mutation, n=9

P=0.293

Wild-type, n=54

TET2 mutation, n=7

P=0.257