The impact of category, cytopathology and cytogenetics on development and progression of clonal and malignant myeloid transformation in inherited bone marrow failure syndromes

Michaela Cada,1 Catherin I. Segbefia,1 Robert Klaassen,2 Conrad V. Fernandez3, Rochelle A. Yanofsky,4 John Wu,5 Yves Pastore,6 Mariana Silva,7 Jeffrey H. Lipton,8 Josee Brossard,9 Bruno Michon,10 Sharon Abish,11 MacGregor Steele,12 Roona Sinha,13 Mark Belletrutti,14 Vicky Breakey,15 Lawrence Jardine,16 Lisa Goodyear,17 Lillian Sung,18 Mary Shago,19 Joseph Beyene,20 Preeti Sharma,1 Bozana Zlateska,1 and Yigal Dror1

1Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics and the Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children and the University of Toronto, Ontario; 2Children’s Hospital of Eastern Ontario, Ottawa, Ontario; 3WK Health Centre, Halifax, Nova Scotia; 4CancerCare Manitoba, Winnipeg, Manitoba; 5British Columbia Children’s Hospital, Vancouver, British Columbia; 6Hôpital Ste. Justine, Montréal, Québec; 7Queen’s University, Kingston, Ontario; 8Princess Margaret Hospital, Toronto, Ontario; 9Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec; 10Centre Hospital University Quebec-Pav CHUL Sainte-Foy, Québec; 11Montreal Children’s Hospital, Montréal, Québec; 12Alberta Children’s Hospital, Calgary, Alberta; 13University of Saskatchewan, Saskatoon, Saskatchewan; 14University of Alberta/Health Sciences Centre, Edmonton, Alberta; 15McMaster Children’s Hospital/McMaster University Health Sciences Centre, Hamilton, Ontario; 16Children’s Hospital of Western Ontario, London, Ontario; 17Janeway Child Health Centre, St. John’s, Newfoundland; 18The Hospital for Sick Children, Toronto, Ontario; and 19Program in Population Genomics, Department of Clinical Epidemiology & Biostatistics, Faculty of Health Sciences, McMaster University, Hamilton, Canada

© 2015 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2014.117457
Manuscript received on October 1, 2014. Manuscript accepted on February 10, 2015.
Correspondence: yigal.dror@sickkids.ca
Supplementary Methods

The impact of category, cytopathology and cytogenetics on development and progression of clonal and malignant myeloid transformation in inherited bone marrow failure syndromes

Michaela Cada, Catherin I. Segbefia, Robert Klaassen, Conrad V Fernandez, Rochelle A Yanofsky, John Wu, Yves Pastore, Mariana Silva, Jeffrey H Lipton, Jossee Brossard, Bruno Michon, Sharon Abish, MacGregor Steele, Roona Sinha, Mark Belltrutti, Vicky Breakey, Lawrence Jardine, Lisa Goodyear, Lillian Sung, Mary Shago, Joseph Bayene, Preeti Sharma, Bozana Zlateska, Yigal Dror

The Canadian Inherited Marrow Failure Registry and Inclusion and Exclusion Criteria
The Canadian Inherited Marrow Failure Registry is a multicenter collaborative study, established in 2001, which enrolls all consecutive patients with IBMFSs in Canada. The registry was approved by the Research Ethics Boards of all participating institutions, and includes all 16 pediatric tertiary care centers in Canada and one adult center. We estimate that these centers care for >95% of the eligible pediatric IBMFS population in Canada. This registry is population-based as >90% of the patients in this study are from centers that enroll >80% of the patients at their institutions.

Patients that fulfill specific diagnostic criteria for an IBMFS are recruited by hematologists at each centre. Briefly, patients are considered to have an IBMFS and are enrolled in the registry if they have chronic bone marrow failure in addition to having either a first-degree relative(s) with an IBMFS or associated physical malformations or are less than 1 year of age at presentation or have positive genetic testing. The diagnosis of the specific IBMFS is then established by the site co-investigator, and reviewed and modified at the central registry office at the Hospital for Sick Children, Toronto, according to previously described diagnostic guidelines based on published data. Patients are considered unclassified-IBMFSs if they do not fit the clinical, laboratory and genetic diagnostic criteria of known IBMFSs. The majority of these patients undergo extensive genetic testing, which was negative. Six of the 13 unclassified cases included herein were also tested by a next generation panel of 72 known IBMFS genes (including RUNXI and GATA2),
which were negative. Genetic testing is performed at the discretion of the referring physician.
Patients registered between January 1, 2001 and August 31, 2011 were included in the current study.

Most patients on the registry have primary IBMFSs, i.e. inherited disorders that have hypo-
productive cytopenia as a major component, such as Fanconi anemia (FA). A small proportion of
patients on the registry have inherited disorders, which typically do not have bone marrow
failure as a component of their syndrome (non-primary IBMFSs), but have either bone marrow
failure or CMMT at the time of their enrollment on the registry.

Patient information is collected on standardized forms and includes demographics, diagnosis,
symptoms, family history, physical malformations, laboratory and genetic tests, imaging studies,
treatment and outcomes. Actual reports stripped of identifiers are often included. Outcomes
recorded include severe cytopenia(s), severe aplastic anemia, MDS, CMCAs, leukemia, solid
tumors, hematopoietic stem cell transplantation (HSCT) and death. Follow-up information is
collected on an annual basis. Patient information from all centers are reviewed at the central
registry office for consistent and uniform definitions, eligibility and diagnoses. When necessary,
information is clarified with the site research team and curated information is entered into a
database at the central registry office.

Exclusion Criteria

Patients with the following groups of disorders are excluded from the registry: 1) acquired
aplastic anemia, i.e. cases which do not fit the diagnostic criteria of an IBMFS, 2) de novo MDS
or therapy related MDS, i.e. cases which do not have an underlying condition that fits the
diagnostic criteria of an IBMFS, and 3) de novo leukemia or therapy related leukemia that is not
associated with known IBMFSs or an antecedent bone marrow failure phase.

Supplementary Table

The impact of category, cytopathology and cytogenetics on development and progression of clonal and malignant myeloid transformation in inherited bone marrow failure syndromes

Michaela Cada, Catherin I. Segbefia, Robert Klaassen, Conrad V Fernandez, Rochelle A Yanofsky, John Wu, Yves Pastore, Mariana Silva, Jeffrey H Lipton, Jossee Brossard, Bruno Michon, Sharon Abish, MacGregor Steele, Roona Sinha, Mark Belltrutti, Vicky Breakey, Lawrence Jardine, Lisa Goodyear, Lillian Sung, Mary Shago, Joseph Bayene, Preeti Sharma, Bozana Zlateska, Yigal Dror
Supplementary Table 1: Diagnostic criteria for myelodysplastic syndrome

The patient should fulfill both criteria:

I. The patient has evidence of MDS by having either:
 a. Two of the following features:
 • Cytopenia. Levels of no more than one lineage may be concomitantly increased (e.g. combined anemia and thrombocytosis or combined anemia, thrombocytopenia and leukocytosis)
 • Dysplasia that fulfils the following criteria
 1. Prominent dysplasia in each affected lineage (>10% of the cells in the affected lineage)
 2. At least two lineages that manifest prominent dysplasia
 • Cytogenetic abnormality
 1. Non-constitutional, acquired clonal marrow cytogenetic abnormality that can be detected in at least 2 cells.
 • Blasts
 1. 5-29% in the bone marrow or peripheral blood
 Or
 b. Unexplained refractory cytopenia with marrow that is persistently cellular or hypercellular, when all other possible causes for such a combination were excluded including peripheral destruction of blood cells or hypersplenism. Supportive diagnostic features include an underlying MDS-predisposition syndrome, high fetal hemoglobin, high red blood cell mean corpuscular volume, patchy distribution of clusters (>10 cells) of erythroid precursors in the bone marrow with increased numbers of proerythroblasts and increased numbers of mitoses.

II. The patient does not have signs of AML as evident by:
 • No classical AML cytogentetics: t(15;17)(PML/RARA), t(8;21)(Runx1;ETO), inv(16)(CBFB1/MYH11), t(9;11)(MLL/AF9)
 Doubling time in repeat BM in 2-3 weeks characteristic of MDS and not AML
Supplementary Figures

The impact of category, cytopathology and cytogenetics on development and progression of clonal and malignant myeloid transformation in inherited bone marrow failure syndromes

Michaela Cada, Catherin I. Segbefia, Robert Klaassen, Conrad V Fernandez, Rochelle A Yanofsky, John Wu, Yves Pastore, Mariana Silva, Jeffrey H Lipton, Jossee Brossard, Bruno Michon, Sharon Abish, MacGregor Steele, Roona Sinha, Mark Belltrutti, Vicky Breakey, Lawrence Jardine, Lisa Goodyear, Lillian Sung, Mary Shago, Joseph Bayene, Preeti Sharma, Bozana Zlateska, Yigal Dror

Supplementary Figure 1
Age at Presentation with Clonal and malignant myeloid transformation
Supplementary Figure 2
Differences in risk of CMMT progression based on differences in the CCC and WHO classifications of childhood MDS

CCC Classification*
A. RC

B. RCD

C. RCRS

D. RCEB

WHO Classification**
A. RCC

B. RAEB + RAEB-t

* The Category, Cytopatology, Cytogenetics (CCC) Classification of Childhood MDS: Refractory Cytopenia (RC, myeloblasts < 5%), Refractory Cytopenia with Dysplasia (RCD, myeloblasts < 5%), Refractory Cytopenia with Ringed Sideroblasts (RCRS, myeloblasts < 5%) and Refractory Cytopenia with Excess Blasts (RCEB, myeloblasts of 5-29%).

** The World Health Organization (WHO) classification of pediatric MDS: Refractory Cytopenia of childhood (RCC, myeloblasts < 5%, this includes RC and RCD), Refractory Anemia with Excess Blasts (RAEB, 5-19% myeloblasts) and RAEB in transformation (RAEB-t, 20-29% myeloblasts). We combined RAEB and RAEB-t in our analysis due to relatively small numbers of patients in each category.
Supplementary Figure 3
Differences in overall survival after CMMT diagnosis based on differences in the CCC and WHO classifications of childhood MDS

CCC Classification*

<table>
<thead>
<tr>
<th>Classification</th>
<th>Time after diagnosis of CMMT (months)</th>
<th>Probability of Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. RC</td>
<td>0, 2, 4, 6, 8, 10</td>
<td>1, 0.8, 0.6, 0.4, 0.2, 0</td>
</tr>
<tr>
<td>B. RCD</td>
<td>0, 2, 4, 6, 8, 10</td>
<td>1, 0.8, 0.6, 0.4, 0.2, 0</td>
</tr>
<tr>
<td>C. RCRS</td>
<td>0, 2, 4, 6, 8, 10</td>
<td>1, 0.8, 0.6, 0.4, 0.2, 0</td>
</tr>
<tr>
<td>D. RCEB</td>
<td>0, 2, 4, 6, 8, 10</td>
<td>1, 0.8, 0.6, 0.4, 0.2, 0</td>
</tr>
</tbody>
</table>

WHO Classification

<table>
<thead>
<tr>
<th>Classification</th>
<th>Time after diagnosis of CMMT (months)</th>
<th>Probability of Survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. RCC</td>
<td>0, 50, 100</td>
<td>1, 0.8, 0.6, 0.4, 0.2, 0</td>
</tr>
<tr>
<td>B. RAEB + RAEB-t</td>
<td>50, 100</td>
<td>1, 0.8, 0.6, 0.4, 0.2, 0</td>
</tr>
</tbody>
</table>

***The Category, Cytopatology, Cytogenetics (CCC) Classification of Childhood MDS: Refractory Cytopenia (RC, myeloblasts < 5%), Refractory Cytopenia with Dysplasia (RCD, myeloblasts < 5%), Refractory Cytopenia with Ringed Sideroblasts (RCRS, myeloblasts < 5%) and Refractory Cytopenia with Excess Blasts (RCEB, myeloblasts of 5-29%).

**The World Health Organization (WHO) classification of pediatric MDS: Refractory Cytopenia of childhood (RCC, myeloblasts < 5%, this includes RC and RCD), Refractory Anemia with Excess Blasts (RAEB, 5-19% myeloblasts) and RAEB in transformation (RAEB-t, 20-29% myeloblasts). We combined RAEB and RAEB-t in our analysis due to relatively small numbers of patients in each category.