The predictive role of interim positron emission tomography for Hodgkin lymphoma treatment outcome is confirmed using the interpretation criteria of the Deauville five-point scale

Andrea Gallamini,1 Sally F. Barrington,2 Alberto Biggi,3 Stephane Chauvie,4 Lale Kostakoglu,5 Michele Gregianin,6 Michel Meignan,7 George N. Mikhail,8 Annika Loft,9 Jan M. Zaucha,10 John F. Seymour,11 Michael S. Hofman,12 Luigi Rigacci,13 Alessandro Pulsoni,14 Morton Coleman,15 Eldad Dann,16 Livio Trentin,17 Olivier Casasnovas,18 Chiara Rusconi,19 Pauline Brice,20 Silvia Bolis,21 Simonetta Viviani,22 Flavia Salvi,23 Stefano Luminari,24 and Martin Hutchings25

1Research and Medical Innovation Department, Centre Antoine Lacassagne, Nice, France; 2Division of Imaging, King’s College London, PET Centre, Guy’s & St. Thomas’ Hospital, London, UK; 3Nuclear Medicine Department, PET Center, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 4Medical Physics Unit, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy; 5Department of Radiology, Division of Nuclear Medicine, Mount Sinai Medical Center, New York, NY, USA; 6Radiotherapy and Nuclear Medicine Unit, Istituto Oncologico Veneto IOV-IRCCS, Padua, Italy; 7Nuclear Medicine Department, Centre Universitaire Hospitalier Henri Mondor, Creteil, Paris, France; 8Clinical Oncology Department, Guy’s & St. Thomas’ Hospital, London, UK; 9PET & Cyclotron Unit, Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Copenhagen University Hospital, Denmark; 10Department of Oncology, Gdynia Oncology Centre & Department of Propedeutic Oncology, University of Gdansk, Poland; 11Haematology Department, Peter MacCallum Cancer Centre, Melbourne, and University of Melbourne, Parkville Victoria, Australia; 12Center for Cancer Imaging Peter MacCallum Cancer Centre, Melbourne, Australia; 13Hematology Department, University of Florence, Careggi Hospital, Italy; 14Cellular Biotechnology and Hematology Department, Sapienza University, Rome, Italy; 15Hematology-Oncology Division, Center for Lymphoma & Myeloma, Weill Cornell Medical Center, New York, NY, USA; 16Department of Hematology & Bone Marrow Transplantation, Rambam Medical Center, Haifa, Israel; 17Hematology Department, University of Padua, Italy; 18Hematology Department, Hospital Le Bocage, Dijon, France; 19Hematology Department - Niguarda Ca’ Granda Hospital, Milan, Italy; 20Hematology Department Centre Hospitalier Universitaire St. Louis, Paris, France; 21Hematology Department, S. Gerardo University Hospital, Monza, Italy; 22Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; 23Department of Hematology, SS Antonio e Biagio Hospital, Alessandria, Italy; 24Onco-Hematology Department, Modena University, Italy; and 25Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Denmark

©2014 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2013.103218
Manuscript received on December 22, 2013. Manuscript accepted on March 17, 2014.
Correspondence: gallamini.a@ospedale.cuneo.it
ON LINE SUPPLEMENTAL FILE

PET scan centralization and review

After anonymization, PET-0 and PET-2 scans were uploaded from the participating PET centers to a dedicated website (https://magic5.to.infn.it/ivs) hosted by the National Institute of Nuclear Physics (INFN) in Turin, Italy. Details have been published previously [15]. Images were then transferred from the Duo workstations (Keosys, Nantes, France) located in Cuneo to a central server managed by Keosys [16]. The server was accessed by six international reviewers with recognized expertise in the field (AB, SB, MG, MH, LK, MM) who reported the scans using the Deauville 5PS [11,17]. In brief, PET-2 scans were scored by comparing the sites of uptake that were deemed to be involved by lymphoma on the baseline scan to the uptake in the normal mediastinal blood pool and the liver as follows:

- Score 1, No uptake
- Score 2, Uptake ≤ mediastinum
- Score 3, Uptake > mediastinum and ≤ liver
- Score 4, Uptake moderately increased above liver at any site
- Score 5, markedly increased uptake above liver and/or new sites of disease

For the purpose of the analysis PET-2 scans with scores 1–3 were considered negative; scores 4–5 were considered positive. Reviewers scored the scans independently and blinded to the clinical outcome. It was decided prior to the review process that a scan would be defined as positive or negative where at least 4 reviewers agreed that a particular scan was positive or negative, respectively. True “discordant” cases were defined as cases where the reviewers were equally split in their opinions with 3 negative and 3 positive reports. For true discordant cases, a joint interpretation session was held with all the reviewers to reach final agreement. Additional clinical data were made available at that stage on request to clarify possible confounding factors in interpretation such as active clinical infection and the use of granulocyte colony stimulating factors.

Statistical analysis.

Progression-free survival (PFS) was defined as the time from diagnosis to either disease progression or relapse, or to death as a result of any cause, whichever occurred first. Overall Survival (OS) was defined as
previously reported [8]. Survival curves were calculated using the Kaplan Meier method [18]. Comparison between survival curves was carried out using Mantel-Haenszel, Log-Rank, Wilcoxon and Tarone-Ware tests. The association between clinical prognostic factors and the probability of treatment failure was assessed by log-rank and univariate regression analyses [19]. To investigate the contribution of individual prognostic factors to PFS, a multivariate analysis based on the Cox proportional hazards regression model was performed [20]. The level for significance was p< 0.05. All data analyses were performed using SPSS for Windows [21]. The concordance between pairs of reviewers with respect to binary results for PET interpretation, with a PET scan scored as 1,2 and 3 defined as negative and scored 4 and 5 defined as positive was measured using Cohen’s Kappa for the 15 combinations of the 6 reviewers. Kappa values between 0.81 and 1.00 indicate a very good agreement, between 0.61 and 0.80 a good agreement [22].