Mesenchymal stromal cells transiently alter the inflammatory milieu post-transplant to delay graft-versus-host disease

Melinda E. Christensen,1,2,4 Brie E. Turner,1,5 Laura J. Sinfield,1 Katarina Kollar,3 Hannah Cullup,1,4 Nigel J. Waterhouse,2,4 Derek N.J. Hart,1,6 Kerry Atkinson,3,4 and Alison M. Rice1,4

1Bone Marrow Transplant Team, 2 Apoptosis and Cytotoxicity Laboratory, 3 Adult Stem Cell Team, Mater Medical Research Institute, South Brisbane, Queensland, Australia, 4University of Queensland, Brisbane, Queenslands, Australia, 5Current address: Australian Red Cross Blood Service, Sydney, NSW, Australia, 6Current address: ANZAC Research Institute, University of Sydney, NSW, Australia


SUPPLEMENTARY APPENDIX

Online Supplementary Figure S1. Third party MSC suppress T-cell proliferation and inflammatory cytokines in vitro. Irradiated UBI-GFP/BL6 MSC were co-cultured in a mixed lymphocyte reaction with irradiated BALB/c (host) stimulators and B10.Br purified T cells (donor). T-cell proliferation, measured by 3H-thymidine incorporation, was significantly reduced in the presence of MSC (A, P<0.01, n=6). The inflammatory cytokines TNFα (B) and IFNγ (C) were assessed in supernatants by cytokine bead array after the mixed lymphocyte reaction (n=3 independent experiments, IFNγ: P<0.01; TNFα: P<0.05). Data presented as mean ± SEM.

Online Supplementary Figure S2. Therapeutic administration of MSC does not affect survival in mice with established GVHD after MHC-matched, miHA-mismatched HSCT. BALB.B mice were transplanted with UBI-GFP/BL6 bone marrow and splenocytes and administered 4x10^7/mouse via intraperitoneal injection once GVHD was established. Mice were monitored daily for GVHD. N=3 per cohort.