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ABSTRACT

Background

Combinations of drug treatments based on bortezomib or lenalidomide plus steroids have
resulted in very high response rates in multiple myeloma. However, most patients still relapse,
indicating the need for novel combination partners to increase duration of response or to treat
relapsed disease. We explored the antimyeloma activity of triple combinations of these well-
established schemes with panobinostat, a novel deacetylase inhibitor with a multi-targeted
profile.

Design and Methods

The activity of these combinations was explored in vitro in cell lines by using MTT and annex-
in'V, ex vivo by flow cytometry, and i1 vivo using two different murine models of human myelo-
ma: one bearing a subcutaneous plasmacytoma and another with a disseminated myeloma.
Moreover, gene expression profiling and immunohistochemical studies were performed.

Results

The addition of panobinostat (LBH589) to dexamethasone and either bortezomib or lenalido-
mide resulted in clear potentiation in multiple myeloma cell lines, freshly isolated plasma cells,
and murine models of multiple myeloma. The quantification of the potency of these combina-
tions by using the Chou-Talalay method showed synergistic combination indices for all of
them. This effect derived from the deregulation of a cluster of genes that was completely dif-
ferent from the sum of genes affected by the single agents (895 and 1323 genes exclusively
deregulated by panobinostat and dexamethasone plus bortezomib or lenalidomide, respective-
ly). Functional experiments, such as annexin V staining, cell cycle analysis, and immunohisto-
chemical studies also supported this potentiation. Anti-myeloma efficacy was confirmed in an
extramedullary plasmacytoma model and a disseminated luciferized model, in which panobi-
nostat also provided a marked benefit in bone disease.

Conclusions
The potent activity, together with the exclusive mechanistic profile, provides the rationale for
the clinical evaluation of these drug combinations in multiple myeloma.
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Introduction

In the last decades, one of the most important advances
achieved in oncology treatment has been the use of combi-
nations of agents with different mechanisms of action, in
order to increase the efficacy of single agents used as
monotherapy. As a result, poly-chemotherapy has become
the standard of care in most hematologic malignancies.
This has been the case for regimens such as CHOP for the
treatment of non-Hodgkin’s lymphoma, ABVD for
Hodgkin’s disease, FLAG-Ida for acute myeloid leukemia or
VAD for multiple myeloma (MM).

In recent years there has been a rapid development of
novel agents targeting tumor-specific mechanisms in MM,;
however, these targeted compounds have generally shown
limited efficacy when used as monotherapy, ' probably due
to the multi-step process of tumorigenesis.” Preliminary
data indicate that the combination of compounds which
simultaneously target multiple tumorigenic pathways
induces a more effective and lasting anti-tumor response in
different malignancies.'*® Therefore, there is a need for the
development of optimal combinations of these novel
agents in order to improve the survival of patients with
myeloma.

A relevant oncogenic mechanism which has recently
gained attention is the epigenetic modulation of gene
expression. Several studies have demonstrated that
enzymes involved in epigenetic mechanisms, such as his-
tone deacetylases (HDAC), are deregulated in many can-
cers,”® and thus affect the expression of tumor suppressors
and oncogenes in cancer cells. The targeting of HDAC
activity with inhibitors has demonstrated significant activ-
ity in preclinical experiments and has emerged as a promis-
ing strategy in the clinical setting, both in terms of efficacy
and breadth of activity.”" Panobinostat (LBH589) is a novel
HDAC inhibitor (HDACI) derived from cynnamic acid
hydroxamates and has already shown promising clinical
anti-tumor activity when administered as a single agent in
patients with refractory hematologic malignancies, particu-
larly cutaneous T-cell lymphoma.'"” In MM, we and others
have recently reported the potent in vitro antimyeloma
activity of this compound in MM cell lines and in primary
samples from MM patients;""* by contrast the clinical
activity of HDACI as single agents appears to be rather
modest in this disease.”™"” Accordingly, the design of clini-
cal trials based on HDACi combinations would be of clear
interest in the clinic. These combinations should be based
on scientifically solid preclinical data, in order to avoid rep-
etition of past mistakes in drug combinations.

In this report, we have stepped forward in the investiga-
tion of the antimyeloma activity of panobinostat by explor-
ing whether triple combinations of some of these anti-
myeloma agents are more efficacious than double combi-
nations and we have confirmed this antimyeloma efficacy
in two different in vivo murine models, including a model
for the investigation of the potential effect of panobinostat
on bone disease.

Design and Methods

Reagents and immunochemicals

Cell culture media, serum, and penicillin-streptomycin were
purchased from Invitrogen Corporation (Gaithersburg, MD,
USA). Panobinostat (LBH589) was provided by Novartis

Triple combinations of panobinostat in MM -

Pharmaceuticals (East Hannover, NJ, USA), bortezomib by
Millennium Pharmaceuticals, Ltd. (Cambridge, MA, USA; and
London, UK), lenalidomide by Celgene (Summit, NJ, USA); dex-
amethasone and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-
zolium bromide (MTT) were purchased from Sigma-Aldrich
(Madrid, Spain), and the Annexin V-FITC Kit was from
Immunostep (Salamanca, Spain). Other generic chemicals were
purchased from Sigma Chemical Co., Roche Biochemicals
(Mannheim, Germany) or Merck & Co., Inc. (Darmstadt,
Germany).

Cell culture, cell proliferation, cell cycle, and
apoptosis analyses

The MMIS cell line was kindly provided by Steven Rosen
(Northwestern University, Chicago, IL, USA) and cultured in
RPMI-1640 with L-glutamine and supplemented with antibiotics
(penicillin at 100 units/mL, streptomycin at 100 ug/mL) and 10%
fetal bovine serum (FBS) at 37°C in a humidified atmosphere in the
presence of 5% CO,/95% air. Bone marrow samples from
patients with MM were aspirated after obtaining informed con-
sent, lysed with ammonium chloride to remove red blood cells,
and cultured in the previous conditions with the only exception of
the addition of 20% FBS. The proliferation of MM cell lines was
examined using MTT colorimetric assays as described else-
where. "® For cell cycle and apoptosis analyses in patients’ samples,
bone marrow cells were incubated with the drugs for 18 h.
Afterwards, a multiparametric technique, based on the combina-
tion of annexin V-FITC and three-color monoclonal antibodies
against myeloma-associated antigens (CD38, CD56, and CD45 —
all from BD Biosciences, San Jose, CA, USA) was performed,
allowing the analysis of apoptosis in tumor plasma cells. The
detailed methodology has been previously described. *

Quantification of the synergism of panobinostat
with other antimyeloma agents

MMIS cells were treated for 72 h with different doses of
panobinostat, bortezomib, lenalidomide and dexamethasone in
monotherapy and in double and triple combinations. For this pur-
pose, three different dose combinations were explored for each
triple combination keeping a constant ratio between them. The
following doses of panobinostat, bortezomib, lenalidomide and
dexamethasone (all of them in nM) were used: 0.5:1:250:2.5;
1:2:500:5; and 2:4:1000:10, respectively. The potency of the com-
bination was quantitated with the Calcusyn software (Biosoft,
Ferguson, MO, USA), which is based on the Chou Talalay
method, ¥ that calculates a combination index (CI) with the fol-
lowing interpretation:

CI >1: antagonistic effect, CI=1: additive effect and CI<1 synergistic

effect

Microarray RNA analyses

Gene expression profile studies were performed as previously
described." In brief, MMI1S cells were treated with different doses
of each drug in monotherapy for 48 h in order to choose the dose
of each of them that induced a beginning of apoptosis (20-25%
cell death, as assessed by annexin V-FITC staining). The selected
doses were panobinostat (7 nM), dexamethasone (0.9 wM), borte-
zomib (3 nM), and lenalidomide (10 uM). These doses were fixed
and used for the two triple combinations (panobinostat + borte-
zomib + dexamethasone and panobinostat + lenalidomide + dex-
amethasone), and in this case, the experiment was stopped, again,
when 20-25% of annexin V staining was observed; that was at 24
and 26 h for each combination, respectively. Duplicates were
obtained from each experiment. Cells were harvested, and the

total RNA was extracted using TRIzol Reagent (Life Technologies,
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MD, USA) and purified with RNAeasy Mini Kit (Qiagen, CA,
USA). RNA integrity was verified with the Agilent 2100
Bioanalyzer (Agilent, CA, USA). Double-stranded ¢cDNA and
biotinylated cRNA were synthesized with T7-polyT primer and
the BioArray RNA labeling kit (Enzo, NY, USA), respectively. The
labeled RNA was then fragmented and hybridized to HG-U133
plus 2.0 oligonucleotide arrays (Affymetrix, CA, USA), which
were scanned in a Gene Array Scanner and analyzed using the
DNA-Chip Analyzer software (DChip). Greater than 2-fold
changes in gene expression were considered significant. Firstly,
changes induced by the drugs in monotherapy and in triple com-
binations as compared with the untreated samples were analyzed,
and, in a second step, the changes induced by the triple combina-
tions and not with the drugs in monotherapy were studied.

Animal models

For the human subcutaneous plasmacytoma model, CB17-
SCID mice (The Jackson Laboratory, Bar Harbor, ME, USA) were
subcutaneously inoculated into the right flank with 3x10° MM1S
cells in 100 uL of RPMI-1640 medium and 100 uL of Matrigel (BD
Biosciences, San Jose, CA USA). When tumors became palpable,
mice were randomized to the control group (receiving the vehicle
alone-PBS) or the different treatment groups. At least eight mice
were included in each group of randomization. Caliper measure-
ments of the tumor diameters were performed 3 days weekly, and
the tumor volume was estimated as the volume of an ellipse using
the following formula:

V=4/3nx (a/2) x (b/2)*

where a and b correspond to the longest and shortest diameter,
respectively. Differences in tumor volumes between groups were
evaluated using one-way analysis of variance by using a general
linear model of repeated measures. For survival evaluation, mice
were sacrificed when their tumor diameters reached 2 cm, or
when they became moribund. Time to clinical endpoint (I'TE)
was estimated from the day of initiation of treatment, and statis-
tical differences were assessed by Kaplan-Meier curves with the
log rank test. Statistical analyses were performed with the SPSS-
15.0 software (SPSS Inc. Chicago, IL, USA), and statistical signifi-
cance was defined as P<0.05.

A systemic MM xenograft mouse model was generated by i.v.
injection of 2x10 * MMU1S cells stably expressing the luciferase pro-
tein through the tail vein. Tumor burden was determined from
whole animal bioluminescence measured using a Xenogen
IVIS200 and Living Image software. Animals were monitored
daily for onset of MM clinical signs. The clinical endpoint was
defined as changes in posture, gait, or mobility that interfere with
feeding behavior, such as hind limb paralysis, consistent foot drag-
ging, or spinal curvature. Compound activity was determined by
tumor growth inhibition (TGI) and TTE. TGI was defined as the
percent change in tumor burden of treated over control animals
(%AT/C) on day 28 after implantation. TTE was defined as the
time from the beginning of treatment to the day of euthanasia due
to MM disease progression. Analysis was performed using
Kaplan-Meier log rank survival analysis and the Holm-Sidak
method of multiple comparisons. All animal experiments were
performed according to the institutional guidelines and the proto-
col approved by the institutions.

Immunohistochemistry and immunofiuorescence
Immunohistochemical studies were performed on selected
tumors excised from treated and control mice. After fixation for 24
h in paraformaldehyde 10%, a tissue microarray (TMA) was per-
formed with a manual tissue arrayer (Beecher Intruments, Sun
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Prairie, WI, USA), including two representative cylinders of each
sample of 1 mm of diameter. TMA sections 3 pm thick were
obtained. After deparaffinization in xylene and rehydratation in
increasing concentrations of ethanol, antigen retrieval, and incuba-
tion with the different primary and secondary antibodies was per-
formed with a semi-automatic Dako Autostainer (DAKO,
Carpinteria, CA, USA) system. Primary antibodies included anti-
cleaved PARE, anti-cleaved caspase-3 (Cell Signaling, Boston, MA,
USA), and anti-Ki67 (Thermo Scientific, Fremont, CA, USA). HRP-
conjugated secondary antibody was from Envision system,
(DAKO ref K5007). Staining was performed with the IHC DAB
MAP system (Ventana Medical Systems, Tucson, AR; USA).
Sections were then counterstained with hematoxylin and ana-
lyzed by standard light microscopy.

For the immunofluorescence analysis, primary antibodies
included anti-cleaved PARP, anti-pH2AX and Ac-Histone H4 (Cell
Signaling, Boston, MA); for the i vivo BrdU analysis, 30 mg/g of
BrdU (Sigma) mixed with 5-fluoro-2’- deoxyuridine (FdU, Sigma;
3 mg/g) were intraperitoneally injected 1 h before the sacrifice of
the mice. After the excision of the tissues, tumors were washed
and DNA was denatured with 2N HCl and sections were incubat-
ed with biotinylated rat anti-BrdU antibody (Accurate Chemical
and Scientific Corporation, NY, USA) or with rat anti-IgG Cy?2 or
Cy3-conjugated (Jackson ImmunoResearch Laboratories, Suffolk,
UK) for the remaining antibodies. Samples were analyzed with a
confocal laser microscope (Leica TCS SP2).

Analysis of panobinostat on tumor-mediated
bone damage

Bone density was determined from three-dimensional recon-
struction of images of the proximal tibia obtained using a high-res-
olution MicroCT scanner (VivaCT40, Scanco, Switzerland). Bone
density was calculated as the percent bone volume divided by
total volume (%BV/TV). Trabecular %BV/TV of the proximal
tibia was determined within a 0.735 mm region.

Bone density was determined in all groups upon onset of clini-
cal signs of MM in vehicle-treated animals. Animals in each group
were imaged over 2 days.

Results

Panobinostat potentiates the efficacy of standard
of care anti-myeloma agents in both in vitro and
ex vivo settings

In previous studies we already showed that panobinostat
synergized with conventional antimyeloma agents in dou-
ble combinations." Now we have extended our work to
investigate the optimal triple combinations of panobinostat
to be assessed in mouse models in vivo and, hopefully, in
the clinic.

As steroids have been the gold standard in the treatment
of MM for many years, the double combination of panobi-
nostat and dexamethasone was chosen as a backbone for
all triple combinations. Subsequently the most active
agents were combined with these two agents in triple com-
binations. Interestingly, when either of the two recently
approved agents for relapsed/refractory MM (bortezomib
and lenalidomide) were added to the combination of
panobinostat + dexamethasone in MM1S cells, the efficacy
was clearly superior to the respective individual agents or
double combinations.

The synergy/additivity of these double and triple combi-
nations was analyzed using the Chou-Talalay method. For
this purpose, MM1S cells were treated with different doses
of these drugs in monotherapy, and in double and triple
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combinations. Figures 1B and 1C represent the dose effect
curves and the algebraic estimate of the combination index
(CI) of the double (1B) and triple (1C) combinations. As can
be observed in the right panel of the figures (algebraic esti-
mate of the CI), two double combinations, panobinostat +
lenalidomide and lenalidomide + dexamethasone, dis-
played very synergistic results with CI less than 0.1 for all
the doses tested. The remaining double combinations
showed Cl in the synergistic range, although, in the case of
bortezomib combinations, these results were only
observed when high doses of this compound were
employed. Regarding triple combinations (Figure 1C), both
of them were very synergistic in all the ranges of doses
used: panobinostat + bortezomib + dexamethasone (PBD)
showed a CI of 0.1-0.2, whereas panobinostat + lenalido-
mide + dexamethasone (PLD) displayed a better CI (<0.1),
probably because of the low activity of lenalidomide when
used as a single agent.

The activity of both triple combinations was further con-
firmed ex vivo by using freshly isolated plasma cells from
three MM patients including one patient with a highly
resistant secondary plasma cell leukemia. As illustrated in
Figure 2A, although the double combinations of panobino-
stat plus either lenalidomide or bortezomib were highly
effective, the antitumor activity increased even further
with triple combinations in all cases, especially in the
patient with plasma cell leukemia.

In order to gain insights into the mechanism of the
decrease in viability of the triple combinations observed in
the MTT assays, we performed annexin V staining experi-
ments by flow cytometry (Figure 2B), which indicate apop-
totic induction. The antiproliferative activity was further
analyzed by evaluating the effects on the cell cycle profile.
Treatment with either PBD or PLD for 48 h induced an
increase in the percentage of cells in GO/G1 with a decrease
of those in proliferative phases (S and G2/M phases) (Figure
2C). In contrast, single-agent treatment did not induce any
effect on the cell cycle profile, possibly due to the use of
suboptimal doses.

Unique genes are deregulated by triple combinations

We hypothesized that the synergy observed in triple
combinations was the result not only of the sum of the
genes activated by the individual agents but also of the
deregulation of additional genes. To test this hypothesis,
we used oligonucleotide microarrays to analyze changes in
the gene expression profile (GEP) of MM1S cells after treat-
ment with panobinostat, dexamethasone, bortezomib,
lenalidomide, and the two triple combinations under study
(PBD and PLD). In order to obtain comparable results, the
doses and times of treatment were fixed to achieve 20-25%
of apoptosis for each treatment. Accordingly, cells were
treated with single agents for 48 h, while in the triple PBD
and PLD combinations, although the dose of the individual
drugs was the same, the incubation times were reduced to
24 and 26 h in order to maintain the 20-25% rate of apop-
tosis. GEP analysis of treated MM1S cells identified a total
of 466 genes significantly affected after treatment with
panobinostat; 219 with dexamethasone; 156 with borte-
zomib and 695 with lenalidomide; while with the triple
combinations of PBD and PLD, despite inducing the same
percentage of apoptosis as the agents in monotherapy and
despite using a shorter time of incubation, the number of
deregulated genes was 1,206 and 2,008 respectively, figures
significantly higher than the corresponding sum for the
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individual drugs. Thus, the comparative analyses of the
GEP identified a set of 895 and 1323 genes exclusively
deregulated in cells treated with PBD and PLD, respective-
ly. In line with the results of the annexin V and cell cycle
experiments, the most significantly deregulated functional
categories corresponded to cell cycle and apoptosis (Online
Supplementary Tables S1 and S2).

Triple combinations of panobinostat have superior
activity compared to single agents and double
combinations in a murine model of multiple myeloma

Given the strong anti-myeloma action of the triple com-
binations, we explored whether this in vitro effect was
translated into in vivo model systems. As a preliminary step,
we analyzed the i1 vivo antimyeloma activity of panobino-
stat as a single agent in two different murine xenograft
models: one of a subcutaneous plasmacytoma, and anoth-
er of a disseminated myeloma using luciferized MM1S
cells. SCID mice bearing human subcutaneous plasmacy-
tomas were randomized to receive PBS or panobinostat,
and, as shown in Figure 3A, treatment significantly
decreased the growth of human plasmacytomas (P<0.05)
without important toxicity. This inhibition of tumor
growth correlated with an important improvement in time
to endpoint (T TE): median TTE of 30 versus 70 days in ani-
mals treated with the vehicle and panobinostat, respective-
ly (P<0.001) (Figure 3B).

In the disseminated luciferized model, the efficacies of
three different doses of panobinostat were assessed: 5, 10
and 20 mg/kg i.p. 5 days weekly. In all three dosed groups,
panobinostat demonstrated a clear benefit of decreased
tumor burden, as measured by photons/sec of biolumines-
cence and statistically significant differences were seen for
groups treated with 10 and 20 mg/kg doses, as compared
with the vehicle control group (Figure 3C). Panobinostat
treatment also significantly improved TTE, especially at the
20 mg/kg dose. As shown in Figure 3D, we observed a
median TTE of 37, 44, 50, and 68 days for the vehicle, 5, 10
and 20 mg/kg panobinostat groups, respectively. All treat-
ment groups displayed statistically significant differences in
terms of survival (P<0.05) as compared to the vehicle-
receiving group.

Furthermore, the efficacy of panobinostat in well-estab-
lished tumors was assessed in an i1 vivo model of big plas-
macytomas. Mice bearing large subcutaneous human plas-
macytomas were treated with panobinostat at a dose of 10
mg/kg ip. for 5 days weekly for 2 weeks. A marked
decrease in tumor volume was observed in all animals fol-
lowing treatment (Figure 3E), with near complete regres-
sion in two of them (data not shown).

Tumors were excised for immunofluorescence analysis
after 2 weeks of treatment. A representative example of
analysis of the molecular effects i situ is shown in Figure
8E An increase on histone H4 acetylation, decreased prolif-
eration, as assessed by BrdU uptake, and increased apopto-
sis, as assessed by cleavage of caspase-3, were observed.
Altogether, these results support the antiproliferative and
proapoptotic effects of panobinostat in vivo.

Next, we assessed the i vivo activity of the two triple
combinations in the subcutaneous human plasmacytoma
model. Animals were randomized to receive vehicle (PBS),
the triple combinations of panobinostat + bortezomib +
dexamethasone (PBD) and panobinostat + lenalidomide +
dexamethasone (PLD), or the agents in monotherapy and
in double combinations (Figure 4). Suboptimal doses of
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Figure 1. Efficacy of the in vitro combinations of panobinostat with
other anti-myeloma agents in MM. (A) MTT studies of the double and
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stat, PBD and PLD groups, respectively (log rank, P<0.001)
(Figure 4B, D). Moreover, when the TTE of mice treated
with the triple combinations was compared with the TTE
of mice receiving the respective double combinations, there
was also a statistically significant advantage for the triple
combinations in all cases (P values ranging between 0.01
and 0.04) (Figure 4 B,D). The triple combinations including
bortezomib or lenalidomide appeared to be equally active,
with no significant differences between them. Notably,
only a slight decrease in body weight (<10% as compared
to the vehicle) was observed in the animals treated with the
triple combinations (data not shown). Tumors were extract-
ed for immunohistochemical analysis of proliferation
markers and apoptosis (Figure 4E). Tumors from mice treat-
ed with triple combinations showed a decrease in expres-
sion of the cell proliferation antigen Ki-67, as well as
increased expression of the apoptotic markers cleaved cas-
pase-3 and PARP. Both combinations also increased the
phosporylation of H2AX indicating the induction of DNA
double-strand breaks (DSB) with the combination.
Together, these results support the antiproliferative and
pro-apoptotic effects of the triple panobinostat combina-
tions as well as a role of the combination in inducing DNA
damage.
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Panobinostat reduces bone density loss in a
disseminated multiple myeloma mouse model

As bone disease is highly relevant into both the patho-
genesis of MM and the quality of life of MM patients, the
effect of panobinostat on bone disease was explored. As
shown in Figure 5, panobinostat treatment significantly
reduced bone density loss in a systemic MM xenograft
mouse model. Animals with systemic disease treated with
panobinostat displayed reduced trabecular (Figure S5A)
bone damage as compared with vehicle-treated animals in
a dose-related fashion, as assessed by Micro CT. The mean
trabecular %BV/TV for vehicle-treated animals was
3.240.6% (mean+SEM), while in animals treated with
panobinostat at 5, 10, or 20 mg/kg it was 6.7+£0.9%,
8.6+0.8%, and 12.3+1%, respectively (Figure 5B), with sta-
tistically significant differences (P<0.05) between the con-
trol, 10, and 20 mg/kg doses.

Discussion

Combinations of anti-cancer compounds have tradition-
ally been based on empiric decisions without a clear exper-
imental background. This practice has resulted, in some
cases, in very effective associations that have become stan-

PBD

Figure 2. Ex vivo antimyeloma efficacy
of the triple combinations (PBD and
PLD) and apoptotic and antiproliferative
PLD activity. (A) Bone marrow samples from
two patients with MM and a patient with
plasma cell leukemia (PCL) were treated
ex vivo for 24 h with panobinostat (20
nM), dexamethasone (40 nM), borte-
zomib (5 nM), and lenalidomide (10 uM)
in monotherapy and in double and triple
combinations. Samples were incubated
with annexin V and CD38, CD45, CD56
monoclonal antibodies to analyze the
induction of apoptosis in the clonal pop-
ulation of plasma cells (B) Annexin V
studies of the double and triple combi-
nations of panobinostat (1 nM) with dex-
amethasone (10 nM) and bortezomib (2
nM) or lenalidomide (0.5 pM) in the
MMA1S cell line after 48 h of treatment.
(C) MM1S cells were incubated with
panobinostat (7 nM), dexamethasone
(0.9 uM), lenalidomide (1 uM) and borte-
zomib (3 nM) as single agents for 48 h
and in triple combinations for 24 and 48
h and the cell cycle profile was exam-
ined by flow cytometry after propidium
lodide staining. Bars indicate the per-
centage of cells in each phase of the cell
cycle from a representative example.

W Control

B panobinostat
B enalidomide
O Dexamethasone
O PLD 48h




dard of care for some malignancies, but in other cases,
these combinations have not shown the expected benefits
in terms of anticancer activity or have resulted in unaccept-
able side effects. More recently, the lack of activity
observed with many of the novel targeted single agents
directed against specific mechanisms of tumor cell growth
and survival has encouraged the investigation of scientifi-
cally-based combinations. In this regard, i1 vitro and in vivo
studies are essential in the search for optimal drug combi-
nations with a double aim: to exhibit significantly better
efficacy than that observed with the agents in monothera-
py, and to display an adequate toxicity profile. Moreover,
since the combination of proteasome inhibitors or
immunomodulatory drugs (IMiD) plus corticosteroids has
become the backbone of MM treatment, we propose that
the efficacy of new experimental agents should be investi-
gated in this context in order to explore whether triple
combinations are able to improve the efficacy of these dou-
ble combinations of agents.

On this background we report on the anti-MM activity
of the combination of panobinostat, a novel deacetylase
inhibitor, with dexamethasone and either one of two
recently approved drugs with well established anti-MM
action: the proteasome inhibitor bortezomib ***' and the
immunomodulatory drug lenalidomide.”” As a first step,

A 3500
3000

£ 2500
2000
= 1500
>

= 1000 .

E 500

=

100
80 1
60 7

Vehicle Pangbinostat

20 7

% Animals on study
S
o

Vehicle

I E.M. Ocio et al.

we showed that both combinations (PBD and PLD) had a
consistent significant advantage over the respective agents
used either in monotherapy or in double combinations in
MM cell lines, and in freshly isolated plasma cells from
MM patients. The quantification of the potency of all these
combinations (both double and triple combinations) by the
Chou-Talalay method showed clear in vitro synergy for all
of them, especially those including lenalidomide, probably
due to the pattern of activity of this drug as a single agent.
These results were confirmed in vivo in murine models, in
which a statistically significant survival advantage was
observed for those mice treated with the triple combina-
tions as compared with any of the double combinations.
Noteworthy, no significant difference was observed
between the combination that included bortezomib and
the one that included lenalidomide in terms of decrease in
tumor growth and in terms of time to clinical endpoint.

This marked activity of both triple combinations corre-
lated with a completely unique profile of deregulated genes
upon treatment, as compared to the sum of the genes
deregulated by the three agents as monotherapy. In this
regard, triple combinations resulted in specific deregulation
of approximately 1,000 genes (895 and 1,323 for PBD and
PLD, respectively) that were not affected after treatment
with any of the agents in monotherapy.

Figure 3. Efficacy of single-agent panobinos-
tat in xenograft models of MM. (A,B)
Panobinostat activity in a human subcuta-
neous plasmacytoma model in NOD-SCID

Panobinostat mice. Mice were randomized to receive vehi-
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control group (P<0.05). Median survival was
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vehicle. (D) Panobinostat treatment
increased the median time to clinical end-
point (Kaplan-Meier). The median TTE for
vehicle treated animals was 37 days. The
median TTE for panobinostat dosed at 5, 10
and 15 mg/kg was 43, 50 and 68 days,
respectively (P<0.05 for all pair-wise com-
parisons, Holm-Sidak). (E, F) Mice with large
plasmacytomas were treated with panobino-
stat at a dose of 10 mg/kg. Tumors which
had decreased in volume by at least 50%
following 10 days of treatment were collect-
ed and analyzed by immunofluorescence for
the presence of acetylated histone H4,
cleaved caspase-3 and BrdU uptake
(Pictures 40x). Panobinostat treatment
increased expression of acetylated histone
H4 and cleaved caspase-3, and decreased
BrdU nuclear immunofluorescence.
(Maghnification 40x)
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Figure 4. In vivo efficacy of triple combi-
nations of panobinostat with dexametha-
sone and either bortezomib (PBD) or
lenalidomide (PLD). Tumor-bearing mice
were treated with vehicle control, panobi-
nostat (10 mg/kg i.p. for the first 21 days
and 5 mg/kg the subsequent days),
bortezomib (0.1 mg/kg i.p. 5 days week-
ly), lenalidomide (15 mg/kg i.p., 5 days
weekly) and dexamethasone (1 mg/kg
ip, 5 days weekly) in monotherapy or in
double and triple combinations. (A,C)
Tumor volumes of MM1S plasmacytomas
following treatment with single agents,
double and triple combinations with
bortezomib (A) and lenalidomide (C).
Statistical differences between groups
were analyzed with one-way analysis of
variance, and statistical significance was
defined as P<0.05. Bars indicate stan-
dard error. (B,D) Survival was analyzed in
a Kaplan Meier curve, and statistical dif-
ference was defined as P<0.05 in the log
rank test. (*) indicates statistically sig-
nificant differences between double com-
binations and their respective agents in
monotherapy. (**) indicates statistically
significant differences between triple
combinations and their respective double
combinations. (E) Immunohistochemical
analyses with anti-cleaved caspase-3,
anti-cleaved-PARP, anti-Ki-67 and
immunofluorescence studies with phos-
pho-H2AX were performed in selected
tumors obtained from mice receiving the
vehicle control and mice receiving triple
combinations. Representative images
demonstrate the differences in expres-
sion of these particular markers induced
by the in vivo treatment with triple com-
binations. (Magnification 40x).




Several genes involved in pathways such as apoptosis or
cell cycle were found among the genes distinctively dereg-
ulated by the triple combinations, and these results were
corroborated in functional experiments assessing cell prolif-
eration and apoptosis. Both triple combinations (PBD and
PLD) potently induced an increase in annexin V staining
and a blockade of cell cycle, and these effects, were, once
more, more obvious in cells treated with the triple combi-
nations than with any of the respective double combina-
tions. Immunohistochemical studies in tumors excised
from mice treated with both triple combinations validated
the results, showing an increase in apoptotic proteins and a
decrease in proliferative markers in tumors excised from
mice treated with both triple combinations. Moreover, a
role for DNA damage in the mechanism of both triple com-
binations is suggested by the increase of pH2AX observed
after treatment.

A second aspect of the preclinical evaluation of novel
combinations is the assessment of the toxicity profile. Both
PBD and PLD, besides showing very potent antimyeloma
activity in the animal studies, displayed very low toxicity
with only a very modest loss of body weight in the treated
animals (less than 10%), suggesting that these drug combi-
nations can reach therapeutic serum concentrations with-
out inducing significant adverse effects.

Patients with multiple myeloma may present with two
different patterns of disease; the most frequent one corre-
sponds to systemic disease with bone marrow infiltration
and general symptoms; the second is characterized by the
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Figure 5. Panobinostat reduces bone density loss in a disseminated
MM xenograft mouse model (A) Representative 3-D MicroCT image
from trabecular bone in MM xenograft mice treated with vehicle or
panobinostat at 15 mg/kg i.p. 5 times weekly. (B) The trabecular
bone density of MM xenograft mice was determined by MicroCT on
days 37-38, post-implant, following treatment, as indicated.
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presence of localized plasmacytomas that may or may not
be associated with disseminated disease. It is important to
note that, following the introduction of novel agents and
the use of allogeneic bone marrow transplantation, we
observe not only a prolongation of survival, but also an
increase in the frequency of extramedullary disease.””

Panobinostat demonstrated significant efficacy in the
two different animal models of MM; the intravenous
model that represents disseminated disease, and a subcuta-
neous plasmacytoma model, which partially resembles the
extramedullary disease. The activity of panobinostat in
both MM models suggests that the therapeutic effects can
be achieved systemically, not only in the bone marrow, but
also in subcutaneous tissues.

Myeloma bone disease is one of the most debilitating
complications of MM, and the increase in life expectancy
observed in the last years for MM patients™” has made pre-
served quality of life a goal for MM therapy. Moreover,
recent reports suggest that the myeloma bone disease may
play an important role in MM pathogenesis.”®” This mani-
festation is the result of an increased destruction™*' of bone
that cannot be compensated by new bone formation.**
Therefore, the efficacy of novel agents in managing myelo-
ma-related bone disease has become of particular interest.
As reviewed by Terpos et al.,** several studies have demon-
strated the effect of IMID (thalidomide and lenalidomide)
in reducing osteoclast activity while the proteasome
inhibitor, bortezomib, appears to have a dual effect, induc-
ing a simultaneous reduction in bone resorption and an
increase of bone formation markers.** In our in vivo model
of disseminated disease, we demonstrated the efficacy of
panobinostat in controlling myeloma-related bone disease
with a clear dose-dependent decrease in trabecular bone
loss.

In summary, our results indicate that panobinostat
demonstrates promising activity in MM via the reduction
of tumor burden, inhibition of disease progression, and
preservation of bone integrity. Triple combinations of
panobinostat + dexamethasone and either bortezomib or
lenalidomide are safe and display promising anti-myeloma
efficacy which is based on the activation of a different
group of genes than those triggered by the sum of the
agents in monotherapy. These studies have provided the
rationale for the activation of two clinical trials with these
triple combinations (panobinostat + bortezomib+dexam-
ethasone and panobinostat + lenalidomide + dexametha-
sone) in patients with relapsed/refractory MM.

Authorship and Disclosures

EMO and DV designed and performed research, ana-
lyzed data, and wrote the paper; PM and EA designed and
performed research, analyzed data, and contributed to the
write-up of the paper; EC, DF-L, MG, LS-S and TH-I per-
formed research and analyzed data; PA, WS and YY con-
tributed research tools, analyzed data and contributed to
the write-up of the paper; AP and JFS-M designed research,
analyzed data, and contributed to the write-up of the paper.
PA, WS and YY are employees of Novartis Pharmaceuticals.
EMO and JESM have participated in advisory boards relat-
ed to the topic of the manuscript and received honoraria
from Novartis Pharmaceuticals. EMO was supported by the
‘Plan Nacional de Investigacién Cientifica, Desarrollo e
Innovacién Tecnoldgica (I+D+]I)’ and by ‘Instituto de Salud
Carlos III-Fondo de Investigacién Sanitaria’ with expedient

haematologica | 2010; 95(5)




Triple combinations of panobinostat in MM -

number 400001. EC was supported by a grant from the
Carolina Foundation (BBVA) and is a postgraduate fellow in
health sciences in the “Facultad de Ciencias Medicas de la
Santa Casa de Misericérdia de Sdo Paulo”. MG was sup-
ported by the ‘Plan Nacional de Investigacién Cientifica,

References

10.

11.

12.

13.

haematologica | 2010; 95(5) 803 -

. Kyrgiou M,

. Ocio EM, Mateos MV, Maiso P, Pandiella A,

San-Miguel JE New drugs in multiple
myeloma: mechanisms of action and phase
I/II clinical findings. Lancet Oncol. 2008;
9(12):1157-65.

. Hanahan D, Weinberg RA. The hallmarks

of cancer. Cell. 2000;100(1):57-70.

. Hallek M, Eichhorst BE Chemotherapy

combination treatment regimens with flu-
darabine in chronic lymphocytic leukemia.
Hematol J. 2004;5 (Suppl 1):520-S30.
Salanti G, Pavlidis N,
Paraskevaidis E, Ioannidis JP. Survival bene-
fits with diverse chemotherapy regimens
for ovarian cancer: meta-analysis of multi-
ple treatments. ] Natl Cancer Inst. 2006;
98(22):1655-63.

. Mauri D, Polyzos NP, Salanti G, Pavlidis N,

loannidis JP. Multiple-treatments meta-
analysis of chemotherapy and targeted
therapies in advanced breast cancer. ] Natl
Cancer Inst. 2008;100(24):1780-91.

. Srikanth M, Davies FE, Morgan GJ. An

update on drug combinations for treatment
of myeloma. Expert Opin Investig Drugs.
2008;17(1):1-12.

. Mahlknecht U, Hoelzer D. Histone acetyla-

tion modifiers in the pathogenesis of malig-
nant disease. Mol Med. 2000;6(8):623-44.

. Timmermann S, Lehrmann H, Polesskaya

A, Harel-Bellan A. Histone acetylation and
disease. Cell Mol Life Sci. 2001;58(5-6):728-
36.

. Mitsiades CS, Hayden PJ, Anderson KC,

Richardson PG. From the bench to the bed-
side: emerging new treatments in multiple
myeloma. Best Pract Res Clin Haematol.
2007;20(4):797-816.

Pan LN, Lu J, Huang B. HDAC inhibitors: a
potential new category of anti-tumor
agents. Cell Mol Immunol. 2007;4(5):337-
43.

Ellis L, Pan Y, Smyth GK, George D],
McCormack C, Williams-Truax R, et al.
Histone deacetylase inhibitor panobinostat
induces clinical responses with associated
alterations in gene expression profiles in
cutaneous T-cell lymphoma. Clin Cancer
Res. 2008;14(14):4500-10.

Ottmann OG, Spencer A, Prince HM,
Bhalla KN, Fischer T, Liu A, et al. Phase
IA/II study of oral panobinostat (LBH589),
a novel pan- deacetylase inhibitor (DACi)
demonstrating efficacy in patients with
advanced hematologic  malignancies.
Blood. 2008;112(11):958a.

Catley L, Weisberg E, Kiziltepe T, Tai YT,
Hideshima T, Neri P, et al. Aggresome
induction by proteasome inhibitor borte-
zomib and alpha-tubulin hyperacetylation
by tubulin deacetylase (TDAC) inhibitor

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

LBHS589 are synergistic in myeloma cells.
Blood. 2006;108(10): 3441-9.

Maiso P, Carvajal-Vergara X, Ocio EM,
Lopez-Perez R, Mateo G, Gutierrez N, et al.
The histone deacetylase inhibitor LBH589
is a potent antimyeloma agent that over-
comes drug resistance. Cancer Res. 2006;
66(11):5781-9.

Galli M, Salmoiraghi S, Golay J, Gozzini A,
Bosi A, Crippa C, et al. A phase II multiple
dose clinical trial of histone deacetylase
inhibitor ITF2357 in patients with relapsed
or progressive multiple myeloma: prelimi-
nary results. Blood. 2007;110(11):356a-
Abstract 1175.

Richardson PG, Mitsiades CS, Colson K,
Reilly E, McBride L, Chiao ], et al. Final
results of a phase I trial of oral vorinostat
(suberoylanilide hydroxamic acid, SAHA)
in patients with advanced multiple myelo-
ma. Blood. 2007;110(11):357a-Abstract
1179.

Wolf JL, Siegel D, Matous ], Lonial S,
Goldschmidt H, Schmitt S, et al. A phase II
study of oral panobinostat (LBH589) in
adult patients with advanced refractory
multiple myeloma. ASH Annual Meeting
Abstracts. 2008;112(11):2774.
Carvajal-Vergara X, Tabera S, Montero JC,
Esparis-Ogando A, Lopez-Perez R, Mateo
G, et al. Multifunctional role of Erk5 in
multiple myeloma. Blood. 2005;105(11):
4492-9.

Chou TC, Talalay P. Quantitative analysis
of dose-effect relationships: the combined
effects of multiple drugs or enzyme
inhibitors. Adv Enzyme Regul. 1984;22:27-
55.

Richardson PG, Sonneveld P, Schuster MW,
Irwin D, Stadtmauer EA, Facon T, et al.
Bortezomib or high-dose dexamethasone
for relapsed multiple myeloma. N Engl J
Med. 2005;352(24):2487-98.

San Miguel JE Schlag R, Khuageva NK,
Dimopoulos MA, Shpilberg O, Kropff M,
et al. Bortezomib plus melphalan and pred-
nisone for initial treatment of multiple
myeloma. N Engl ] Med. 2008;359(9):906-
17.

Dimopoulos M, Spencer A, Attal M, Prince
HM, Harousseau JL, Dmoszynska A, et al.
Lenalidomide plus dexamethasone for
relapsed or refractory multiple myeloma. N
Engl ] Med. 2007;357(21):2123-32.

Weber DM, Chen C, Niesvizky R, Wang
M, Belch A, Stadtmauer EA, et al.
Lenalidomide plus dexamethasone for
relapsed multiple myeloma in North
America. N Engl ] Med. 2007;357(21):2133-
42.

Minnema MC, van de Donk NW,
Zweegman S, Hegenbart U, Schonland S,
Raymakers R, et al. Extramedullary relaps-
es after allogeneic non-myeloablative stem

25.

26.

27.

29.

30.

31.

32.

33.

34.

35.

Desarrollo e Innovacién Tecnolégica (I+D+I) and by
‘Instituto de Salud Carlos IlI-Fondo de Investigacién
Sanitaria’ with expedient number 05/0279. PM was sup-
ported by the FIS-FEDER through projects to JSM, and a
Spanish Myeloma Network Program (G03/136).

cell transplantation in multiple myeloma
patients do not negatively affect treatment
outcome. Bone Marrow Transplant.
2008;41(9):779-84.

Perez-Simon JA, Sureda A, Fernandez-
Aviles F Sampol A, Cabrera JR, Caballero
D, et al. Reduced-intensity conditioning
allogeneic transplantation is associated
with a high incidence of extramedullary
relapses in multiple myeloma patients. Leu-
kemia. 2006;20(8):542-5.

Brenner H, Gondos A, Pulte D. Recent
major improvement in long-term survival
of younger patients with multiple myelo-
ma. Blood. 2008;111(5):2521-6.

Kumar SK, Rajkumar SV, Dispenzieri A,
Lacy MQ, Hayman SR, Buadi FK, et al.
Improved survival in multiple myeloma
and the impact of novel therapies. Blood.
2008;111(5): 2516-20.

. Yaccoby S, Wezeman M], Zangari M,

Walker R, Cottler-Fox M, Gaddy D, et al.
Inhibitory effects of osteoblasts and
increased bone formation on myeloma in
novel culture systems and a myelomatous
mouse model. Haematologica. 2006;91(2):
192-9.

Abe M, Hiura K, Wilde ], Shioyasono A,
Moriyama K, Hashimoto T, et al
Osteoclasts enhance myeloma cell growth
and survival via cell-cell contact: a vicious
cycle between bone destruction and
myeloma expansion. Blood. 2004;104(8):
2484-91.

Pearse RN, Sordillo EM, Yaccoby S, Wong
BR, Liau DE Colman N, et al. Multiple
myeloma disrupts the TRANCE/ osteopro-
tegerin cytokine axis to trigger bone
destruction and promote tumor progres-
sion. Proc Natl Acad Sci USA. 2001;98(20):
11581-6.

Terpos E, Sezer O, Croucher P, Dimopoulos
MA. Myeloma bone disease and protea-
some inhibition therapies. Blood. 2007;
110(4):1098-104.

Giuliani N, Rizzoli V, Roodman GD.
Multiple  myeloma  bone  disease:
Pathophysiology of osteoblast inhibition.
Blood. 2006;108(13):3992-6.

Taube T, Beneton MN, McCloskey EV,
Rogers S, Greaves M, Kanis JA. Abnormal
bone remodelling in patients with myelo-
matosis and normal biochemical indices of
bone resorption. Eur ] Haematol. 1992;49
(4):192-8.

Terpos E, Dimopoulos MA, Sezer O. The
effect of novel anti-myeloma agents on
bone metabolism of patients with multiple
myeloma. Leukemia. 2007;21(9):1875-84.
Terpos E. Bortezomib directly inhibits
osteoclast function in multiple myeloma:
implications into the management of
myeloma bone disease. Leuk Res. 2008;
32(11):1646-7.



