alpha-thalassemias are hematologic diseases arising from more than 80 different genetic alterations, affecting one or both copies of the duplicated alpha-globin genes (alpha 1 and alpha 2) located in 16p13.3. Although most causative alterations are large genomic deletions, at least 48 non-deletional point mutations have also been reported so far. The clinical severity of the disease is strictly related to the number of altered genes, ranging from the fatal Hb Bart’s hydrops fetalis syndrome (four affected genes), to the moderately severe HbH disease (three affected genes), to the mild microcytic, hypochromic anemia (two affected genes), and to the clinically silent or asymptomatic form (one affected gene). The diagnosis of the most severe forms of alpha-thalassemia is primarily based on routine hematologic and biochemical analyses, while the clear identification of healthy carriers and/or alpha-thalassemia patients presenting a moderate or silent phenotype is often hindered by the absence of specific diagnostic hematologic parameters. In these latter cases, molecular DNA analysis becomes a fundamental tool to validate hematologic findings, especially when other possible explanations for microcytosis or mild anemia (such as rare beta-globin mutations or iron deficiency) have been ruled out.

In this study, 83 individuals of Sicilian origin with mild anemia and hematologic parameters (mean corpuscular volume <78 fl; mean cell hemoglobin <27 pg; HB A2<3.3%) suggestive of possible carriehership of a silent form of alpha-thalassemia were selected for molecular screening (Table 1). The study was conducted in accordance with the Declaration of Helsinki and blood samples were obtained after informed consent had been given. All 83 subjects were negative for structural hemoglobin variants (including HbH) and only three of them had low serum ferritin levels (6.2; 6.7 and 10.5 ng/mL). These three individuals were excluded from further molecular analyses. To rule out the occurrence of normal HbA (beta-thalassemia in the remaining 80 subjects, rare or silent beta-thalassemia alleles were excluded by direct sequencing of the full genomic beta-globin region. The most common Mediterranean alpha-globin deletional (alpha 1; --alpha; --alpha 2; --alpha 1 Med; --alpha Cal) and point mutations or microdeletions (alpha 1; alpha 2; alpha 3; alpha 4) were also excluded by GAP-polymerase chain reaction (PCR) and enzymatic restriction assay, respectively. All these individuals were then analyzed for the presence of rare point mutations or micro-deletions/insertions in both alpha-globin genes by a previously described denaturing high performance liquid chromatography (DHPLC)-based assay. A semi-nested PCR with an initial amplification step using one alpha-globin gene specific primer, located at the divergent 3’ end, was carried out to discriminate between mutations located in alpha 1 or alpha 2-globin genes. After DHPLC analysis and subsequent direct DNA sequencing of altered fragments, four known structural alpha-globin variants were detected in one

Table 1. Hematologic parameters and diagnosis in the 83 Sicilian individuals investigated for suspected alpha-thalassemia.

<table>
<thead>
<tr>
<th>No. of subjects</th>
<th>Mean Hb (g/dL)</th>
<th>Mean MCV (fl)</th>
<th>Mean MCH (pg)</th>
<th>Mean MCH (%)</th>
<th>Mean HbA2 (%)</th>
<th>Mean ferritin (ng/mL)</th>
<th>Mean transferrin (mg/100mL)</th>
<th>Mean serum ferritin (µg/100 mL)</th>
<th>alpha-globin mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>10.96±1.26</td>
<td>74.22±3.08</td>
<td>24.44±1.48</td>
<td>2.26±0.68</td>
<td>7.96±2.63</td>
<td>286.66±58.04</td>
<td>64.00±16.37</td>
<td></td>
<td>Iron deficiency</td>
</tr>
<tr>
<td>1</td>
<td>8.8</td>
<td>71.06</td>
<td>22.74</td>
<td>1.5</td>
<td>21.7</td>
<td>188</td>
<td></td>
<td></td>
<td>Hb Sun Prairie (homozygous)</td>
</tr>
<tr>
<td>1</td>
<td>11.6</td>
<td>70.92</td>
<td>23.11</td>
<td>2.9</td>
<td>54</td>
<td>231</td>
<td></td>
<td></td>
<td>Hb Interlaken</td>
</tr>
<tr>
<td>1</td>
<td>15.5</td>
<td>75.00</td>
<td>24.22</td>
<td>3.3</td>
<td>63.4</td>
<td>291</td>
<td></td>
<td></td>
<td>Hb Chesapeake</td>
</tr>
<tr>
<td>1</td>
<td>13.4</td>
<td>79.60</td>
<td>24.63</td>
<td>2.7</td>
<td>57.9</td>
<td>238</td>
<td></td>
<td></td>
<td>Hb Lombard</td>
</tr>
<tr>
<td>11</td>
<td>12.76±1.09</td>
<td>74.75±3.01</td>
<td>24.80±0.86</td>
<td>2.6±0.19</td>
<td>41.77±22.84</td>
<td>286.11±49.82</td>
<td>78.18±13.77</td>
<td></td>
<td>Poly A (AATAAA-G)</td>
</tr>
<tr>
<td>65</td>
<td>12.17±1.44</td>
<td>71.31±10.08</td>
<td>21.09±2.60</td>
<td>2.45±0.50</td>
<td>76.30±179.85</td>
<td>293.70±63.44</td>
<td>74.98±31.31</td>
<td></td>
<td>No mutation</td>
</tr>
</tbody>
</table>
It is likely that the causative genetic alterations, two novel sequence variations in intronic regions (IVS1-27 C-T in α2 and IVS2-122 G-T in α1) were identified in four and three individuals, respectively; and two different point substitutions were detected in the 3’ UTR of the α2 globin gene (3’UTR Term+46 C-A and 3’-UTR Term+98 C-G) in one and four individuals, respectively. Although these previously unreported sequence changes were absent in 90 normal controls, they must be considered neutral, unless functional data are provided to support their definitive role in the pathogenesis of α-thalassemia.

In addition to known causative alterations, two novel sequence variations in intronic regions (IVS1-27 C-T in α2 and IVS2-122 G-T in α1) were identified in four and three individuals, respectively; and two different point substitutions were detected in the 3’ UTR of the α1 globin gene (3’UTR Term+46 C-A and 3’-UTR Term+98 C-G) in one and four individuals, respectively. Although these previously unreported sequence changes were absent in 90 normal controls, they must be considered neutral, unless functional data are provided to support their definitive role in the pathogenesis of α-thalassemia.

In spite of direct sequencing analysis performed on the full genomic region of the two α-globin genes, no pathogenic mutations were detected in the remaining 63 individuals, thus confirming a 100% concordance with the DHPLC results. It is likely that the causative genetic alterations in these cases are located in α-globin regulatory regions (e.g. the HS-40) or in different modifier genes. Overall, the DHPLC analysis was carried out in less than a week and was found to be highly reproducible. This approach could be useful for molecular diagnosis of both silent and mild α-thalassemia carriers when common deletional mutations have been excluded and when a preliminary screening method is needed to select a mutated fragment for sequencing, with consistent reductions in the time and cost of analysis.

Valentina Guida,*, Alessia Colosimo,*, Marco Fichera,*, Turiddu Lombardo,*, Luciana Rigoli,*, Bruno Dallapiccola**

*IRCCS-CSS, San Giovanni Rotondo and CSS-Mendel Institute, Rome, Italy; **Department of Paediatrics, University of Messina, Italy; ¶Department of Experimental Medicine and Pathology, University “La Sapienza”, Rome, Italy

These two authors contributed equally to the study.

Key words: α-thalassemia, β-globin genes, DHPLC, non-deletional mutations.

Prepublished online on February 17, 2006. PII: 03906078_9149.

Funding: this work was supported by a grant from the Italian Ministry of Health (Ricerca Corrente 2005).

Correspondence: Valentina Guida, PhD, CSS-Mendel Institute, viale Regina Margherita 261, 00198 Rome, Italy. Phone: international +39.06.44160530; Fax: international +39.06.44160548. E-mail: v.guida@css-mendel.it

References