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for sickle cell disease

A B S T R A C T

Sickle cell disease (SCD) is characterized by the presence of sickle hemoglobin (HbS),
which has the unique property of polymerizing when deoxygenated. The sickling process
is markedly accelerated when intracellular concentration of HbS is increased. Due to the
unique dependence of HbS polymerization on its cell concentration, a slight reduction in
HbS concentration is likely to have a beneficial effect on the kinetic of polymerization
and on the generation of dense, dehydrated red cells. The pathophysiology of acute and
chronic clinical manifestations of SCD is strictly related to the hemoglobin cyclic poly-
merization, to the generation of dense, dehydrated red cells and to the interaction between
sickle red cells and abnormal activated vascular endothelial cells.

In the present paper we have reviewed the principal therapeutic strategies and we have
explored the future treatment options for sickle cell disease. Therapy of sickle cell disease
is based on two major goals. The first one is the decrease in intracellular HbS concentra-
tion obtained with agents activating fetal hemoglobin synthesis, such as hydroxyurea (HU)
or with erythrocyte-active agents blocking different red cell membrane ion pathways and
preventing sickle cell dehydration. The second one is based on therapeutic strategies,
which may reduce sickle cell-endothelial adhesive events.
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mutation on the gene for 3 globin, a
Asubunit of adult hemoglobin A (HbA),
is the cause of sickle cell disease
(SCD). An adenine (A) to thymine (T) substi-
tution in codon 6 (GAG - GTG) of the 3 glo-
bin gene specifies the insertion of valine in
place of glutamic acid in the 3-globin chain
(B, Bee-v).1-6 Sickle hemoglobin (HbS) has
the unique property of polymerizing when
deoxygenated.'-7 Studies of HbS polymer-
ization kinetics, following deoxygenation,
have demonstrated the crucial role of cellu-
lar HbS concentration in sickling by showing
that the formation of polymers is a high
order exponential function of hemoglobin
concentration.’7 The HbS polymerization is
associated with a reduction in cell ion and
water content (cell dehydration), increased
red cell density and further acceleration of
HbS polymerization (Figure 1). These dense,
dehydrated erythrocytes are likely to under-
go instant polymerization in conditions of
mild hypoxia due to their high HbS concen-
tration and they may carry HbS polymers
under room air conditions, t0o.5
Pathophysiological studies have shown
that the dense, dehydrated red cells play a
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central role in the acute and chronic clinical
manifestations of sickle cell disease, which
are based on vaso-occlusion and impaired
blood flow, as a consequence of intravascu-
lar sickling in capillaries and small vessels
(Figure 1). The persistent membrane dam-
age associated with HbS polymerization also
favors the generation of distorted rigid cells
and contributes to additional vaso-occlusive
events and cell destruction in the peripher-
al circulation (Figure 1).™-8 These damaged,
dense sickle red cells also show a loss of
phospholipid asymmetry with externaliza-
tion of phosphatidylserine (PS), which is
believed to play a significant role in pro-
moting macrophage recognition with pre-
cocious removal of erythrocytes (erythro-
phagocytosis), cell apoptosis and activation
of coagulation.>-1" Although the percentage
of dense erythrocytes does not predict the
severity of the disease, this percentage has
been shown to increase prior to or in the
first phase of painful crises and decrease
thereafter.’-7 Vaso-occlusive events in the
microcirculation are the result of a complex
scenario involving interactions between dif-
ferent cell types, including dense, dehydrat-
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Figure 1. Schematic diagram of pathogenesis of sickle
cell disease. The deoxygenation-induced polymerization
of hemoglobin S (HbS) leads to erythrocytes morphology
changes, generating sickled, dense, dehydrated red cells,
which may be trapped into wider diameter vessels. Owing
to decreased flexibility and increased tendency to adhere
to abnormally activated vascular endothelium, sickled
red cells can lead to vaso-occlusion with the concomitant
development of pathological conditions such as acute
ischemic pain crisis, organ/endothelium damage and
acute chest syndrome.

ed sickle cells, reticulocytes, abnormally activated
endothelial cells, leukocytes, platelets and plasma fac-
tors.12-14

The therapeutic strategies for sickle cell disease are
based on two major goals. The first one is to decrease
the intracellular HbS concentration with agents acti-
vating fetal hemoglobin synthesis or with erythrocyte-
active agents preventing sickle cell dehydration (Figure
2). The second one is to reduce sickle cell-endothelial
adhesive events (Figure 3).

Agents activating fetal hemoglobin:
hydroxyurea in sickle cell disease

Studies in human and in animal models for sickle
cell disease (SCD) have shown that increasing fetal
hemoglobin (HbF) levels significantly decrease hemo-
globin S polymerization and sickling (Figure 2). Clini-
cal and epidemiological studies indicate that HbF con-
centration (F cells) is a crucial determinant of the clin-
ical severity of SCD. In fact, subjects with low HbF con-
centrations have a more severe clinical presentation,
characterized by more frequent painful crises, episodes
of acute chest syndrome and an increased mortality,
than do patients with higher HbF content.15-22

In the last decades, different molecules intended to
increase HbF concentration have been studied in sick-
le cell anemia,23-29 although hydroxyurea (HU) is the
only such drug that has been evaluated in large clin-
ical trials and approved for clinical use.6-18 Substan-
tial reductions in pain rate, acute chest crises and
transfusion requirements have been achieved with
hydroxyurea therapy. Recently, Steinberg et al. have
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Figure 2. Expected change in delay
time for HbS polymerization induced by
a hypothetical treatment that reduces
HbS concentration and its and its
expected effect on capillary sickling
and occlusion. A: Schematic simulation
of the delay time for polymer formation
in an untreated sickle red cell and a
treated red cell with reduced HbS con-
centration. B: The formation of sickle
cells and occlusion of a capillary in
untreated erythrocytes. The HbS poly-
merization rate is extremely dependent
on HbS concentration. Dilution of HbS
obtained by treatment with hydrox-
B yurea (HU), which increase cellular con-
centration of fetal hemoglobin (F cells),
or by increased hydration or lowered

to a time where the erythrocytes have
passed through the capillaries into
wider diameter vessels.
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Figure 3. Schematic diagram of possible therapeutic tar-
gets for agents that interfere with adherence of sickle red
cells (RBC) or reticulocytes to abnormally activated
endothelial cells. PS: phosphatidylserine; TSP: throm-
bospondine; Ab anti-band 3: autoantibodies anti-band 3.;
vW: von Willebrand.

showed a 40% reduction in mortality among patients
treated with HU, in a long-term (9-year follow-up)
study.’7.18 The therapeutic actions of hydroxyurea
appear to be mainly based on the effects of increas-
ing HbF concentration and decreased HbS concentra-
tion on polymerization and sickling,5-2230 but other
beneficial effects of HU have recently been described
in sickle cell patients.

Accumulating evidence in both animal models for
sickle cell disease and in humans with the disease sug-
gest that sickle cell anemia may be considered as a
chronic inflammatory disease characterized by acute
events further amplifying the inflammatory re-
sponse.31-35 HU may affect the inflammatory cascade
and adhesion sickle-endothelial cells. In fact, HU treat-
ment reduces the neutrophil count, the release of nor-
mal and stress reticulocytes from bone marrow, and the
levels of soluble VCAM-1 (Figure 3).36-42 Beneficial
effects of HU treatment are present even before a meas-
urable increase in HbF can be detected, as suggested by
the precocious reduction in reticulocyte adhesion recep-
tors a4P1 (VLA-4) and CD36 expression.+2 Moreover, in
vitrodata show that HU may directly affect endothelial
cells, which become less available for sickle cell adher-
ence.*3

Recently, in vitro and in vivo studies have reported
evidences of a new mechanism of action for HU.44-50
Patients receiving HU treatment show increased lev-
els of nitrite, nitrate and iron nitrosyl hemoglobin, as
well as of red cell cGMP content, which may be con-
sidered as markers of NO metabolism.44-51 Nitric oxide
(NO) is a potent vasodilator and modulator of inflam-
matory cascade and is generated by peroxidation of

350

hydroxyurea.#5-47 Cokic et al. have recently shown that
HU and two other NO-donors increase y-globin gene
expression in erythroid progenitors and this associat-
ed with increased cGMP levels, suggesting the pres-
ence of an NO-mediated pathway for y-globin gene
induction and related increase in fetal hemoglobin
synthesis in erythroid precursors.5253

Finally, another possible therapeutic effect of HU is
related to induction of methemoglobin formation,
reduce deoxyHbS concentration associated with
increase erythropoietin production, which may adjunc-
tively contribute to proliferation of HbF-producing
progenitors.54-56

Erythrocyte-active agents preventing sickle red
cell dehydration

A novel therapeutic strategy in sickle cell disease is
based on the reducing polymerization and sickling by
reducing HbS concentration inside sickle red cells,
throughout the prevention of sickle cell dehydration.
One of the distinguish characteristics of sickle cell dis-
ease is the presence of dense erythrocytes, formed as a
result of cell dehydration and K loss (Figure 2).57-65 These
dense red cells generally have lower HbF content and
include both reticulocytes and red cells. Usually, the
dense fraction of erythrocytes has the high percentage
of irreversible sickle cells (ISCs), cells that maintain their
sickle shape even when fully oxygenated. An inverse
correlation has been demonstrated between percentage
of ICSs and erythrocyte survival.’8 Although the per-
centage of dense erythrocyte does not predict the
severity of the disease, it has been shown to increase
prior or in the first phase of the painful crisis and
decrease thereafter.'257 [n vitro and in vivo studies in
animal models for sickle cell disease have suggested a
crucial role of dehydrated red cell in the pathogenesis
of vaso-occlusive events; in fact, the dense, dehydrat-
ed red cells might be easily trapped in postcapillary
venules, promoting micro-vascular obstruction.1257-64

Thus, prevention of sickle cell dehydration represents
an exciting possible new therapeutic strategy (Figure
2). Studies on sickle cell membrane permeability have
shown abnormalities in different specialized mem-
brane-embedded transporters that move cations,
anions and water across the erythrocyte membrane
(Figure 4).65-68 |n the last two decades, studies on
nature and properties of the pathways mediating K
loss in sickle cell erythrocytes, have allowed to devel-
oped new therapeutic tools to block them.

This strategy was first explored by therapeutic
induction of hyponatriemic hypoosmotic state through
the administration of 1-desamini-8-D-arginine vaso-
pressin in the setting of very high water intake and
severely restricted salt intake.68 Although the clinical
regimen was not reliably sustainable on a long-term
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Figure 4. Schematic diagram of the
ion transport pathways involved in
sickle cell dehydration and action
sites of potential therapeutic
blockers: Ca* activated K* channel
(Gardos channel, KCNN4): Clotri-
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sium (Mg) Pidolate; Deoxygena-
tion-induced pathway: Dipyri-
damole; Anion conductive path-
way: NS3623. Deoxygenation
induces HbS polymerization and
sickling, with associated increased
membrane permeability and abnor-
mal function of different ion trans-
port pathways, resulting in K, Cl-
and water loss and red cell dehy-
dration.
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basis, a reduction of sickling was demonstrated in vit-
ro.68 The major pathways for K* loss during sickle cell
dehydration events are the Ca*-activated K* channel,
known as Gardos channel, operating in parallel with
the conductive Cl- pathway and the electroneutral K-
Cl cotransport (Figure 4).

Ca?*-activated K* channel (Gardos channel, KCNN4).
Sickle red cells are characterized by increased amounts
of calcium, which is functionally and physically
sequestered into intracellular vescicles, but maintained
in normal concentration in steady-state.8-74 The cyclic
deoxygenation and HbS polymerization has been show
to produce transient increase in free intracellular calci-
um, which is responsible for large K* loss with associate
Cl- and water loss (Figure 4). This effect is due to acti-
vation of a specific Ca-gated K channel that was first
described by Gardos.68-74 In vitro activation of the Gar-
dos channel by deoxygenation and inhibition by specif-
ic blockers have been demonstrated in sickle cell ery-
throcytes.68-78 The event activating the Gardos channel
is a stochastic process and is not limited to a particular
fraction of susceptible SS red cells delimited by cell age
or density. A recent development in the study of Gardos
channel has been the description of inhibitory effect of
clotrimazole (CLT).79-83 Based on this evidences, it has
been shown that CLT is a specific inhibitor of the Gar-
dos channel and prevents sickle cell dehydration in vit-
ro. Subsequently, in a transgenic mouse model for sick-
le cell disease, oral administration of CLT was reported
to specifically block the Gardos channel, increase red
cell K content and reduced red cell dehydration. The
compound was further tested in human normal and sick-
le cell volunteers, showing to be a powerful and effec-
tive inhibitor of the erythroid Gardos channel and sick-
le red cell dehydration. Studies on CLT metabolites, with
conserved Gardos channel inhibitory power, were used
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as backbone for a new class of compounds, which pos-
sess a more safe drug profile. One of these compounds
(ICA-17043) has been shown to have 10-fold greater
potency than CLT in blocking the Gardos channel in vit-
ro and in vivo to specifically inhibit Gardos channel and
prevent K loss and red cell dehydration.84 Phase | stud-
ies have been reported in normal human subjects and in
sickle cell patients, showing significant blockade of the
Gardos channel, in absence of any significant side-
effects.85 ICA-17043 is now in Phase Il/Ill clinical trials.
Another therapeutic agent, which has been recently
shown to modulate the Gardos channel activity, is L-
Arginine. Patients with SCD show a state of relative
depletion of arginine, which is part of nitric oxide path-
way.86 L-Arginine supplementation of transgenic sickle
cell mice resulted in inhibition of erythrocyte Gardos
channel activity and amelioration of red cell dehydra-
tion.87

K-CI cotransport (KCC1/3/4). Several forms of K-Cl
cotransport have been described in various human and
mouse tissues. KCC2 expression seems to be limited to
brain cells, while human and mouse erythrocytes seem
to possess in different and still undeterminated ratios:
KCC1, KCC3 and KCC4 isoforms.88-92 The K-Cl cotrans-
port mediates red cell dehydration in SCD. Studies on K-
Cl cotransport function have identified different trig-
gers of activation, such as cell swelling, cell acidification,
reduced cell magnesium (Mg) content, membrane oxida-
tive damage and cell age.8+103 Franco et al. have also
shown that K-Cl cotransport mainly contributes to dehy-
dration of sickle reticulocytes and that deoxygenation of
sickle red cells also stimulates K-Cl cotransport in iso-
tonic solutions at pH 7.4.104105 The relative contribution
of Gardos channel and K-Cl cotransport in generating
dehydrated, dense sickle red cells is a complex and still
incompletely known issue.
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K-CI cotransport activity is modulated by red cell
Mg content and low Mg levels are associated with
abnormal activation of K-CI cotransport.8+-103 Few
studies report a reduction in red cell Mg content in
SCD patients.106-197 Thus, oral Mg supplementation
with the aim of increase red cell Mg levels and inhibit-
ing K-Cl cotransport activity may represent a possible
therapeutic strategy for ameliorating SCD red cell
dehydration. Dietary magnesium supplementation in
transgenic sickle cell mice has demonstrated that red
cell dehydration can be ameliorate by increasing ery-
throcyte Mg content.80.197 Two uncontrolled trails with
oral supplementation with Mg pidolate have been car-
ried out in sickle cell patients, showing a reduction in
K-Cl cotransport activity, an increase in red cell K and
Mg content, an improvement in red cell dehydration
and a reduction in the number of painful events.108.109
A first double-blind, placebo controlled crossover study
with Mg pidolate supplementation in sickle cell chil-
dren did not demonstrate any significant changes in
the hematological parameters studied; however the
Mg pidolate dosage used was markedly lower than
that proposed in the previous studies.0 Recently,
Brousseou et al. have shown that infusion of Mg sul-
fate reduces the length of stay of sickle cell patients
hospitalized during vaso-occlusive crises.™

Cl- permeability pathway. Studies on conductive Cl-
pathway indicate that for red cell dehydration the
movement of K must be accompanied by that of chlo-
ride (or other monovalent anions) to maintain elec-
troneutrality (Figure 4).12 Elegant sets of studies
demonstrate that movement of K and dehydration via
Gardos channel can be blocked if the Cl- conductance
pathway is inhibited.12-15 A specific inhibitor of Cl-
conductance has been recently developed (NS3623;
Figure 4). NS3623 has been tested in transgenic sick-
le cell mice and was able to reduce in vivo sickle cell
dehydration, with a mild echynocytosis at highest
dosages.”5 Unfortunately, NS3623 was not further
developed for clinical use, in relation to undesirable
side effects observed in human subjects.

Deoxygenation-induced Na* and K* fluxes. Original
works by Tosteson and subsequent studies by others
have characterized the increased Na* and K* perme-
ability associated with red cell sickling.16 When cel-
lular Na* is increased, Na-K ATPase pump activation
may contribute to sickle cell dehydration (Figure 4).116-
125 The deoxygenation-induced fluxes are inhibited in
vitro by dipyridamole at concentration achievable in
vivo.125

Anti-adherence therapy in sickle cell disease
Vaso-occlusions are central events in pathophysiolo-

gy of sickle cell disease acute and chronic organ dam-

age and clinical manifestations. The abnormal adhesive
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interactions between erythrocyte, reticulocytes,
endothelial cells, platelets or soluble mediators may rep-
resent a new possible therapeutic target. The end-point
of anti-adherence therapy is to interfere with the ini-
tialization and/or with the amplification of adhesive
events. Although the anti-adherence therapy has been
mainly studied during acute painful events, its mecha-
nisms of action are only partially known. RheothRx
(Poloxamer 188) is a non ionic surfactant block copoly-
mer that improves microvascular blood flow by lower-
ing viscosity and frictional forces.'26127 RheothRx has
been shown to block hydrophobic adhesive interactions
(cell-cell, cell-protein or protein-protein interaction) in
blood, resulting in reduction of erythrocytes aggrega-
tion and red cells adherence to vascular endothelium,
with a hypothesized improvement in microvascular
flow.126127 Phase |l studies have shown a limited favor-
able effects in treatment of acute pain crises, when asso-
ciated with HU in sickle cell children.'27 Recent studies
on sickle cell-endothelium adhesive mechanism have
identified three different interactions which may have
particular therapeutic relevance: (i) the integrin a4f31
receptor of fibronectin and the vascular adhesion mol-
ecule -1 (VCAM-1); (ii) thrombospondin and/or colla-
gen and receptor CD36, present of the surface of
endothelial cells, platelets and reticulocyte-rich sub-
population of normal and sickle erythrocytes; (iii) sulfate
glycolipids, which bind thrombospondin, von Willebrand
factor multimer and laminin (Figure 3).126-132 Ex vivo and
in vitro experimental studies have shown that throm-
bospondin and von Willebrand factor mediated interac-
tion between sickle red cells and endothelium via aV33
integrin, might be blocked by monoclonal antibodies
against aV[33 integrin receptors.’28 The binding between
thrombospondin, von Willebrand factor and laminin that
mediate sickle cell-endothelial adherence might be
blocked anionic polysaccaride, like high molecular
weight dextran sulfate or chondroitin sulfate.’2® The
endothelial cells represent another possible therapeutic
target. Sulfazosina that inhibit the transcription of
nuclear factor NFk-B may interfere with endothelial cell
activation. Transgenic sickle cell mice treated with Sul-
fazosina show a reduction in activated circulating
endothelial cells, and in VCAM-1, ICAM and E-selectin
vascular wall endothelial expression. In a pilot study, the
administration of Sulfazosina to sickle cell patients
results in reduction of the endothelial abnormal activa-
tion.130-132

Therapeutic relevance of nitric oxide (NO) in sick-
le cell disease

Nitric oxide (NO) is a potent vasodilator and
inhibitor of vascular remodeling and also affects the
multistep cascade events involved in leukocyte,
platelets and endothelial activation. NO is generat-
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ed from L-Arginine by endothelial cells via constitu-
tive and inducible nitric oxide synthases.

Recent studies have focused on inhaled NO for the
treatment of tissue damage in various ischemic syn-
dromes, including cardiovascular disease, pulmonary
hypertension, acute lung distress syndromes. The pos-
sible therapeutic role of inhaled NO has been stud-
ied in different animal models of lung injury induced
by ischemic/reperfusion.35136 Inhaled NO prevents
leukocyte migration and reduces the permeability of
the peripheral microvasculature. In association with
surfactant, inhaled NO alleviates alveoli's edema and
reduces bronchoalveolar leukocytes and neutrophils
infiltration in animal models of ischemic lung
injury.133-143 The beneficial role of inhaled NO in SCD
has been recently reported in the treatment of acute
vaso-occlusive crisis in a placebo controlled ran-
domized clinical trial, although the mechanism of
action in SCD remained unknown.’” Plasma NO
metabolites are decreased in SCD patients during
either vaso-occlusive crisis associated with severe
pain or acute chest syndrome.133-143 A decrease in
exhaled NO has been reported in sickle cell patients,

Experimental treatments for sickle cell disease

suggesting a role for NO in the pathogenesis of the
pulmonary complications.140.141 In a transgenic mouse
model for sickle cell disease, it has been shown that
inhaled NO provides protection during ischemia/re-
perfusion lung injury, in which endothelial NO pro-
duction is reduced.35

Another possible therapeutic strategy for increase
NO production in sickle cell disease is represented by
supplementation of L-Arginine.86144 Morris CR and
co-workers have shown that L-Arginine supplemen-
tation alone induces an unexpected decrease in NO
metabolite production.ts In a following pilot study,
the Authors observed an in increase in NO metabo-
lite when L-Arginine was co-administrated with HU,
suggesting that the combination treatment may have
a synergistic effect on NO production.’## Further
studies are currently being planned to test the effects
of inhaled NO or NO donors and L-Arginine supple-
mentation in sickle cell disease.
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