for possible late side-effects in splenectomized ITP patients must be conducted. Further research, including clinical trials that incorporate clinically relevant end points (the severity of bleeding), quality of life assessment and economic considerations, is needed to improve management.

The results obtained emphasize the multiple therapeutic uses of rituximab as well as the urgent need for research to extend and optimize the use of this drug in the yet little explored world of autoimmune diseases.

Martino Introna, *Josée Golay,* Tiziano Barbui
*Molecular Immunohaematology Laboratory, Istituto di Ricerche Farmacologiche “Mario Negri”, Milan; *Division of Hematology, Ospedali Riuniti di Bergamo, Italy

References

Non-myeloablative conditioning before allogeneic stem cell transplantation in adult acute lymphoblastic leukemia

In adult acute lymphoblastic leukemia (ALL) complete remission (CR) rates of 80–85% and leukemia-free survival (LFS) rates of 30–40% were achieved in recent studies. It seems, however, that the options for further improvement are limited. This is particularly true for the high proportion of elderly ALL patients who are not covered in most trials. Nowadays many study groups refer ALL patients with high risk or very high risk (Ph/BCR-ABL positive) to allogeneic stem cell transplantation (SCT) from sibling donors in first CR with LFS rates of 30–40% in prospective studies and high risk patients. This procedure is associated with nearly equally high rates of transplant-related mortality (TRM) and relapse (RR) of around 30%. The outcome of matched unrelated (MUD) SCT is approaching these results, with a somewhat higher TRM but lower RR. Results of allogeneic SCT are probably improving further by better donor selection, supportive care, etc. The complications, such as graft-versus-host disease (GvHD), organ toxicities and infections, are nevertheless considerable and the risk increases with age, comorbidities such as fungal infections, decreasing performance status or use of mismatched (MM) transplants. Alternative SCT regimens — excluding intensified conditioning — are urgently required for these patients with a high risk of TRM.

Non-myeloablative SCT or reduced intensity conditioning regimens (NMSCT) are new approaches which deserve evaluation in ALL and may lead to an extension of indications for allogeneic SCT. In contrast to conventional SCT, which mainly relies on killing cells by high-dose chemotherapy and total body irradiation (TBI), NMSCT aims to exploit graft-versus-leukemia (GvL) effects. Immunosuppression, for example, with purine analogs, other cytokostatic drugs and/or low dose TBI, is followed by the infusion of donor stem cells from siblings or MUD with adapted immunosuppression to establish host tolerance.

Consequently this approach can only be effective in diseases with a relevant GvL effect. NMSCT yielded quite impressive results in indolent leukemias such as chronic myeloid leukemia but also in acute myeloid leukemia. There is, however, the general opinion that GvL effects are less pronounced in ALL than in other malignancies. Nevertheless these effects are present as indicated by the lower RR in patients with acute and/or chronic GvHD, the lower RR after MUD SCT, and the induction of remissions by withdrawal of GvHD prophylaxis or donor lymphocyte infusions (DLI) in single patients with relapsed ALL.
Until recently, published results of NMSCT in ALL were limited to 1–9 patients, who were included in larger cohorts of patients with different hematologic malignancies. Only four groups have reported on 10 or more patients. The largest, fully published cohort so far is included in the study by Martino et al. in this issue of Haematologica which summarizes the features of patients from four prospective studies. As in the beginnings of conventional SCT, NMSCT studies mainly include patients with advanced disease. Thus Martino et al. report only 4 patients treated in first CR. Again, as in other NMSCT studies, the cohort of patients represents an unfavorable selection since it included those with a very high risk of relapse (41% Ph/BCR-ABL) and all patients were considered ineligible for conventional transplantation because of age or comorbidities. This is also indicated by the high median age of 50 years which is comparable to that of other NMSCT studies with a median age of 46–56 years and 1–2 decades higher than in conventional SCT studies. Furthermore, the study covers patients with relapse after autologous SCT (30%). Other NMSCT studies in ALL even included a considerable proportion of patients with relapse after conventional allogeneic SCT.

The majority of NMSCT studies in ALL relied on sibling donors and only few studies included a significant proportion of patients with a high risk of relapse. Martino et al. report that 30% of the donors were MUD and 15% MM related. All these unfavorable features increase the likelihood of high TRM in this study.

Despite this expectation the results are quite favorable. As in most other NMSCT studies no graft failure was observed. The overall survival (OS) is 31%, with a RR of 49% and a TRM of 23%. The OS is better than that in other larger cohorts of NMSCT in ALL patients with OS rates of 15%, 21% and 18%. In other studies considerably higher TRM rates were observed: in an EBMT report the TRM was 72% in ALL compared to 47% in AML. The relatively low TRM rate is also surprising since MUD and MM donors accounted for 45% of the donors and the rate of GvHD was considerable with 38% extensive chronic GvHD. Since the therapeutic activity of NMSCT is mainly based on GvL effects, as anticipated, the lack of GvHD was associated with a higher progression rate. This is of interest since a significant correlation has not been shown in other studies with NMSCT in ALL. It remains open however, whether patients with GvHD also achieved a higher OS. Furthermore — as in most SCT studies — the quality of life of the patients is not considered.

NMSCT, as an immunotherapeutic approach, is probably most appropriate in patients with low level disease. Nevertheless it was mainly investigated in patients with overt relapse and large tumor mass. In the study by Martino et al. 44% of the patients were even refractory to chemotherapy i.e. had more than 30% blasts in bone marrow at the time of the NMSCT. As in other studies, there was a surprisingly high CR rate, although often followed by relapse at short notice. Martino et al. report a RR of 33% in patients transplanted in CR compared to 60% in those with overt disease. Other authors also achieved poor results in patients with measurable disease at the time of NMSCT. In a similarly large cohort only patients with CR at the time of NMSCT survived. This is not surprising since the effects of NMSCT occur more slowly than those of chemotherapy and probably too slowly to inhibit rapidly progressive, resistant ALL.

Martino et al. did not include patients with relapse after conventional allogeneic SCT. This may have contributed to the better outcome of their cohort, since results of NMSCT appear to be particularly poor in these patients.

It is of particular interest that Martino et al. performed minimal residual disease (MRD) monitoring after NMSCT and demonstrated a correlation between positive MRD status and relapse. Single cases of molecular remissions after NMSCT in ALL have also been reported by others. It has already been demonstrated that MRD before and after conventional SCT is correlated with prognosis. MRD evaluation is an ideal method to follow the course of disease and probably also to decide on additional therapeutic interventions such as reduction or termination of GvHD prophylaxis or administration of DLI. Even patients with overt relapse after NMSCT reached CR after administration of DLI.

Overall it can be stated that the initial expectation that NMSCT and GvL effects have no role in ALL has been disproven. Although patients with extremely unfavorable characteristics have been treated so far, there has been a low rate of graft failure, remissions have been achieved in overt relapse and long-term survival has been reported in some cases. However, published results indicate that NMSCT probably has no role in advanced, active ALL with large tumor mass and probably not in relapse after allogeneic SCT. The latter may, however, depend on donor selection.

The optimal preparative regimens and procedures for GvHD prophylaxis remain open. The study by Martino et al. also included several different approaches and a comparative analysis within this small cohort is probably not possible. Therefore well-defined prospective trials are urgently required. In the future the effectiveness of NMSCT may be measured by MRD evaluation and increased by additional treatment interventions such as STI571 in Ph/BCR-ABL positive ALL or antibody therapy.

Prognostic factors are apparently quite similar for conventional SCT and NMSCT. Several studies demonstrated that older age and poor performance...
status are also unfavorable for NMSCT.8,15,20 It remains open whether better results would be achievable in younger patients with earlier stage of disease. We, therefore, support the final statement by Martino et al. that, at present, NMSCT should only be offered in patients with a high risk of TRM and within the context of clinical trials. It is still no alternative to conventional SCT in younger patients with ALL.

Nicola Gökbüget, Dieter Hoelzer
Department for Hematology and Oncology
University Hospital, Theodor Stern Kai 7
60590 Frankfurt, Germany

References

2. Arnold R, Bunjes D, Ehninger G. Allogeneic stem cell transplantation from HLA-identical sibling donor in high risk ALL patients is less effective than transplantation from unrelated donors. Blood 2002;100:77a[abstract 279].

Economy-class syndrome: media hype or real risk?

Venenous thromboembolism (VTE) is a multifactorial disease resulting from the interaction between genetic and environmental risk factors. The former include abnormalities causing inherited thrombophilia, such as deficiencies of the naturally occurring anticoagulant proteins antithrombin, protein C, protein S, and the gain-of-function mutations in genes encoding coagulation factor V (factor V Leiden) and prothrombin. The environmental, transient risk factors associated with an increased risk of VTE are cancer, recent surgery, pregnancy and puerperium, use of oral contraceptives and prolonged immobilization. For many decades, flights have been considered a risk factor for VTE. Recently, the interest in this topic increased both in the lay and medical press because of the death from pulmonary embolism of a 27-year-old woman at the arrival hall in Heathrow airport (London) after a 20-hour flight from Australia.1

In 1946, Homans first referred to flights as a possible risk factor for VTE reporting an episode of venous thrombosis in a doctor after a 14-hour flight.2 The most important pathogenic mechanism for VTE during air travel is stasis in the lower limbs. During the London Blitz in the Second World War it was observed that the incidence of fatal pulmonary