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Background and Objective. Peripheral blood stem
cells (PBSC) have replaced bone marrow (BM) as
the primary form for autologous hematopoietic stem
cell transplantation. Furthermore, the use of allo-
geneic PBSC transplantation is now rapidly expand-
ing and several centers have adopted this procedure.
A new strategy in the use of PBSC is positive selec-
tion of CD34+ hematopoietic progenitor (CD34+)
cells, and indeed large-scale devices for the clinical
exploitation of CD34+ cell selection are now com-
mercially available. In the autologous setting, the
primary advantage of using CD34+ selected PBSC is
reduced tumor cell contamination during PBSC
preparation. On the other hand, in the allogeneic set-
ting, CD34+ selection methods are used to reduce
the incidence and severity of GvHD. Initial trials of
CD34+ selected PBSC transplants have mainly been
performed in adult cancer patients, and experience
with CD34+ selected PBSC transplantation in pedi-
atric populations is still limited. The purpose of this
review is to clarify the status of CD34+ selected
PBSC transplantation in the pediatric population.

Evidence and Information Sources. All authors of the
present review work in the field of pediatric stem
cell transplantation and in a stem cell processing
laboratory, and have contributed to original papers
published in peer-reviewed journals. The materials
examined in the present review include articles and
abstracts published in journals covered by the Sci-
ence Citation Index® and Medline®. However, since
there is still limited experience with CD34+ cell
selection in pediatric populations, information on
experience in adults will be discussed regarding the
CD34+ cell-selection procedures and transplantation.
Pediatric experience with transplants with CD34+

selected cells will be presented and discussed pri-
marily based on our own experience. Specific prob-
lems related to PBSC mobilization and collection in
children will also be discussed.

State of the Art. A review of the literature shows
that with current CD34+ selection methods, purity of
the CD34+ cell fraction can range from 30% to 90%,
and two to three logs of T-cell depletion can be

achieved. Tumor cell contamination has not yet been
fully evaluated. The clonogenic activity of progenitor
cells after CD34+ selection from PB remains high.
Transplantation of autologous selected CD34+ cells
from PBSC gives prompt and stable engraftment. The
long-term therapeutic efficacy should be evaluated
with regard to tumor recurrence. Allogeneic CD34+

selected cells successfully engraft immunomyelo-
ablated recipients though a mega-cell dose effect
between HLA-matched pairs. The results of allo-
geneic CD34+ selected cell transplantation from
HLA-mismatched donors are, so far, not satisfactory
because of the high rate of rejection, severe infec-
tious complications and relapse of the disease.
CD34+ selection may also be used as a target of
gene therapy, as a source of dendritic cells for can-
cer immunotherapy and for the treatment of patients
with autoimmune disease.
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Hematopoietic stem cell transplantation
(HSCT) is being increasingly used for the
treatment of a variety of hematologic and

oncologic disorders in childhood; aplastic anemia,1

hemoglobinopathy,2 congenital immunodeficiency,3

selected acute and chronic leukemia4-7 and cancer
with a poor prognosis when treated with currently
available multidisciplinary therapy, such as neurob-
lastoma and soft tissue sarcoma.8-14 Autologous
mobilized peripheral blood stem cell transplantation
(PBSCT) results in rapid and durable trilineage
hematopoietic recovery after myeloablative chemo-
therapy, and replaces bone marrow transplantation
(BMT).15,16 In BMT, the HSC that exist in the iliac
bone can be collected by aspiration under general
anesthesia. However, the hematopoietic activity in
this area decreases with age, which very often makes
the procedure inefficient. PBSC can be collected
from the body’s entire pool of HSC to provide more
stem cells than can be obtained by localized BM
aspiration from iliac bones; this leads to the faster
recovery of hematopoiesis after PBSCT than after
BMT, with fewer infectious complications,17 and



makes cell component therapy far more effective with
PBSC. Furthermore, the collection of PBSC does not
require anesthesia or multiple marrow aspiration,
and hence is far less invasive than bone marrow col-
lection.18

Even in the field of allogeneic transplantation, the
use of PBSC is rapidly expanding as a treatment for
hematologic malignancies, and initial reports are
encouraging.19-21 The use of PBSC offers several
advantages, for both donors and patients.22 For
donors, the harvest of PBSC does not require gener-
al anesthesia and does not cause local trauma, as
mentioned earlier. For recipients, the use of PBSC
results in faster engraftment, which may be associat-
ed with a better clinical outcome.23 Although the risk
of graft-versus-host disease (GvHD) is not increased
despite the transfusion of a heavy load of lympho-
cytes, the impact on GvHD and graft-versus-leukemia
(GVL) effect remains to be resolved.24

A newly developed strategy in the use of PBSC is the
positive selection of CD34+ hematopoietic progenitor
(CD34+) cells; large-scale devices for clinical CD34+

cell selection are now commercially available.25,26 The
CD34+ antigen is present on the earliest identifiable
progenitor cells and committed myeloid precursors,
whereas it is not expressed on mature hematopoiet-
ic cells or solid tumor cells.27,28 Transplantation of
CD34+ selected cells offers several clinical advantages
compared to conventional transplantation with buffy
coated BM harvest or unmanipulated PB products
in both autologous and allogeneic settings. In the
autologous setting, the number of tumor cells cont-
aminating the autografts can be reduced (up to four
logs in solid tumors), without the use of pharmaco-
logic agents such as 4-hydroxycyclophosphamide or
immunotoxins.29-31 In the allogeneic setting, T-cell
depletion of up to four logs can be achieved.32 After
the positive selection of CD34+ cells, the clonogenic
activity of recovered progenitor cells remains high
compared with that obtained after other methods of
tumor cell purging, such as the use of maphospha-
mide or 4-hydroperoxycyclophosphamide,29-31 or T-
cell depletion via elutriation or negative selection
using T-cell monoclonal antibodies. More impor-
tantly, PBSC may be easier to manipulate in vitro
because of the number of progenitor cells available.33

Mobilization of PBSC
The mechanism of PBSC mobilization is not yet

clear. Several cell adhesion molecules might be
involved in PBSC mobilization.34-37 PBSC mobiliza-
tion in humans was initially noted during recovery
after myelosuppressive chemotherapy.38,39 Disease-
specific chemotherapy has been used as well as a spe-
cific mobilization protocols.40-42 In children, a rapid
increase in the blood cell count in the recovery phase
of chemotherapy predicts a higher cell yield by
apheresis than in adult patients.43 The main limita-
tions of chemotherapy mobilization are neutropenia

and the unpredictability of the timing of harvest. The
ability of cytokines to mobilize blood cells, either
alone or by enhancing chemotherapy mobilization,
has been recognized. Granulocyte colony-stimulat-
ing factor (G-CSF) and granulocyte/macrophage
colony-stimulating factor (GM-CSF) are now used in
clinical PBSC collection.44 The timing of harvest can
be adequately predicted when mobilization with
cytokine(s) alone is used. Many other cytokines with
mobilization potential have been investigated, includ-
ing stem cell factor (SCF),45 macrophage inflamma-
tory protein (MIP)-1a,46 interleukin (IL)-1,47 IL-3,48

IL-6,49 IL-8,50 IL-11,51 erythropoietin52 and thrombo-
poietin.53 Identification of the optimal cytokines and
protocol for use in PBSC mobilization has become a
major issue. A growing concern is that tumor cells
may be recruited into the peripheral circulation by
protocols used for HPC mobilization.54

In the allogeneic setting, G-CSF is exclusively used
in normal healthy donors because it has fewer toxic
effects than other available cytokines.55 The optimal
dose and schedule for the administration of G-CSF
have not yet been established in children. In normal
adult donors, a 5-day course of G-CSF at a dose of
10-12 µg/kg/day is widely used.56 A lower dose might
be able to induce a sufficient increase in circulating
progenitor cells in children, considering their hemato-
poietic capacity. After daily G-CSF administration,
the level of circulating CD34+ cells usually peaks at
around day 5, whereas leukocytosis is observed short-
ly after G-CSF administration.57 G-CSF administra-
tion is well tolerated in children, and most children
do not require analgesia to relieve bone pain.58 In our
preliminary study, side effects of G-CSF administra-
tion were rare in children compared to in adult
donors (Table 1). Other common side effects include
slight fever, general fatigue and asymptomatic eleva-
tion of serum alkaline phosphatase and transami-
nases.59 Rare side effects such as splenic rupture,60

iritis61 and retinal hemorrhage62 following G-CSF-
administration have been reported. More impor-
tantly, with respect to donors who are children, we
need to develop reliable and easy-to-use methods to
reduce their anxieties about drug treatment, needle
punctures, and the entire harvesting process. In pedi-
atric allogeneic CD34+ selected cell transplantation,
most of the donors are adults because parents are
often chosen as HLA two or three loci-mismatched
donors when this procedure is limited to transplan-
tation between HLA-mismatched related pairs.

Collection and cryopreservation of PBSC
Experience with PBSC collection from a pediatric pop-

ulation is still limited, especially from normal donors.
The main distinctions of a pediatric population are the
special requirements for vascular access63-65 and leuka-
pheresis, high progenitor yields, and the risk of stem
cell exhaustion.66 The yield of progenitor cells might
depend on the speed at which blood is withdrawn.
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Many centers use a tunneled, double-lumen Broviac
catheter, which is inserted via subclavian veins or
saphenous veins under general anesthesia.63 A pedi-
atric MedComp hemodialysis catheter or a tempo-
rary hemodialysis catheter is also used, and is insert-
ed under conscious sedation.67 We have used a tem-
porary radial artery catheter which was inserted with-
out any sedation or anesthesia.68 In normal PBSC
donors, it is common practice not to place a central
line, but rather to use a peripheral line to avoid the
risks involved with catheter placement.

Care should be taken regarding acid citrate dex-
trose (ACD)-A toxicity and hypovolemia when PBSC
are harvested from children. Calcium replacement is
preferred when ACD-A is used in large-volume leuka-
pheresis to maintain acceptable levels of ionized cal-
cium. The devices used for PBSC collection are Fen-
wall CS3000 Plus, AS100 and COBE spectra. Small
volume collection chambers (SVCC) and small vol-
ume separating chambers (SVSC) are used to reduce
the extracorporeal volume to 140 mL. We tested the
efficacy of a new procedure involving SVSC plus SVCC
in eliminating the abrupt change in blood volume
during apheresis for small children by monitoring the
intra-apheresis dynamics of hematocrit values, and
found that the application of this procedure pre-
vented a rapid change in the hematocrit level at the
initiation of apheresis without reducing the collec-
tion efficiency.69 Furthermore, the use of SVSC plus
SVCC can reduce the volume of blood needed to pre-
prime the machine. Priming with autologous blood
or leukocyte-depleted red blood cells is used to
reduce the risk of hypovolemia when collection is
started when PBSC are collected from donors weigh-
ing less than 20 kg. Autologous blood is preferred
for normal pediatric donors to avoid side effects
caused by allogeneic blood transfusion. In our PBSC
transplant units, we collect autologous blood once a
week, beginning three or four weeks before apheresis.
When blood is withdrawn the second or third time,
previously saved blood is infused back into the donor
and 1.5 or 2 times the volume of saved blood is with-
drawn to prevent hypovolemia, and more fresh blood
is saved. A total of 150 mL is saved one week before

apheresis and used for priming in the first apheresis.
At the end of the first apheresis, any blood remain-
ing in the machine is collected using the collection
mode, and used for priming in the second PBSC col-
lection.

In the autologous setting, collected PBSCs must be
frozen until infusion after preparative high-dose
chemotherapy. PBSC can be frozen by a simplified
procedure without a programmed freezer using 6%
hydroxyethyl starch (HES) and 5% DMSO, without
losing their clonogenic viability or engraftment poten-
tial.70 Frozen PBSC are stored in the liquid phase of
liquid nitrogen or in an electric freezer at –135°C. In
the allogeneic setting, PBSC are not always frozen.
Fresh PBSC can be infused into patients who have
completed preparative chemoradiotherapy. Howev-
er, it is rather difficult to assess the quality of PBSC,
and the effects of this approach on the incidence and
severity of GVHD remain to be determined.

Enrichment of CD34+ cells
The CD34 antigen is a 115-kDa surface glyco-

phosphoprotein that is expressed on 1-3% of normal
bone marrow cells, including both committed and
probably long-term reconstituting progenitor cells,27

whereas it is not expressed on mature hematopoiet-
ic cells or solid tumor cells.27,28 The development of
monoclonal antibodies that identify different epi-
topes of the CD34 antigen has led to several immu-
nologic techniques for the positive selection of cells
labeled with an anti-CD34 monoclonal antibody.

Negative selection can be used to deplete high lev-
els of tumor cells. However, there can be significant
losses of progenitor cells, and purging by chemical
agents can damage progenitor cells.29-31 Enrichment
of CD34+ cells provides an attractive alternative, in
that several systems are available commercially and
these are usually automated and relatively rapid,
making daily use more feasible71-74 even in chil-
dren.75,76 The different devices available have not yet
been directly compared for PBSC, although such a
comparison has been made for BM cells.77,78 In our
cell-processing laboratory, the leukapheresis product
obtained on the first day was stored at 4°C overnight
and pooled with the product obtained on the sec-
ond day.79 The two aphereses products were then
processed on an Isolex 300 (Baxter Healthcare Corp.,
Irvine, CA, USA) at the same time. The removal of
platelets before application of the anti-CD34 anti-
body partly prevented the binding of stem cells by
anti-CD34 antibody. It took about three hours to iso-
late CD34+ cells. The average purity of the CD34+ cell
fraction was 79%, with an average recovery rate of
21%. Cells were mixed slowly with an equal volume of
a freezing solution containing 8% human albumin,
12% HES, and 10% dimethylsulfoxide (DMSO) to
give final concentrations of 6% HES and 5% DMSO.
Both CD34-positive and -negative cells were trans-
ferred to 5-mL polypropylene tubes and then placed
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Table 1. Occurrence of side effects related to G-CSF treat-
ment in normal donors. 

< 10 y.o. (no. 9) No complaints 9/9

> 10 y.o. (no. 5) Mild headache 3/5
Lumbago 3/5
General fatigue 2/5

Adult donor (no. 22) Lumbago/headache 22/22
Nausea 2/22
Skin induration 1/22



directly in an electric freezer that maintained a tem-
perature of –135°C (Sanyo Electric Co., Tokyo,
Japan). The cells were stored in the same freezer until
use. With the currently available techniques, the puri-
ty of the CD34+ selected cells varies between 30% and
90%, which equates to detectable levels of tumor
cells. Clonogenic activity after CD34+ cell selection
remains high. Significant cell loss occurs, which
increases the number of aphereses needed to collect
sufficient CD34+ cells. However, when allowance is
made for the number of CD34+ cells infused, the use
of purified CD34+ cells is not associated with any
delay in engraftment.25,80,81 G-CSF-mobilized PB
leukapheresis products undergoing the selection of
CD34+ cells give a greater yield and enrichment of
progenitor cells than BM harvest collected from HLA-
identical normal healthy donors for allogeneic trans-
plantation.82 However, considering the cost and time
needed for CD34+ cell isolation, some researchers
claim that the benefits of isolation remain unclear.

Other benefits of CD34+ cell purification include
avoiding the toxicity due to DMSO and cell lysis prod-
ucts.83 Furthermore, the reduced volume of the infu-
sion makes it feasible to infuse the grafts directly into
BM to avoid trapping stem cells in the lungs.84-86 We
hypothesized that direct puncture of the marrow cav-
ity to implant a graft, rather than systemic intra-
venous administration, may guarantee more stable
engraftment in clinical transplantation, but only
when cells are purified to reduce the total volume of
the graft.87

The number of CD3+ cells in the CD34– fraction
should be sufficient to allow for multiple graded
incremental T cell aliquots for donor lymphocyte
infusion (DLI).88 An unadsorbed fraction containing
85% functional T cells may be stored in graded
aliquots to support post-transplant immunothera-
py, when necessary. This strategy may be the pre-
ferred therapeutic option in patients considered to be
at high risk of relapse.

However, the use of CD34+ cells as a marker for
HSC has recently been questioned.89 More primitive
progenitor cells might exist in the CD34– fraction.90

Autologous transplantation with CD34+

selected cells
The clinical relevance of tumor cell contamination

within autologous HPC grafts as a source of relapse
remains controversial,91-93 and as yet no adequately
sized trials have addressed this point. CD34 selection
might not eliminate contaminating tumor cells.94,95

The assessment has been hampered by the lack of
sensitive clonogenic assays to detect residual tumor
cells.96,97 With the advent of molecular assays for the
detection of residual tumor cells, this assessment may
become feasible and readily available. Using either
sensitive immunofluorescence techniques or the poly-
merase chain reaction (PCR), neuroblastoma cells
have been detected in virtually all PBSC products,98

and these quantities are probably sufficient to con-
tribute to relapse after transplantation.99 For some
patients, CD34+ selection alone is not sufficient to
render PBSC products tumor cell-negative, and for
these patients, additional tumor cell depletion may
be necessary.

Although potential disadvantages of purified
CD34+ cells are that the reconstitution of hemato-
logic function may be delayed due to the lack of facil-
itating cells100 and the susceptibility to damage inflict-
ed by cryopreservation and thawing, the use of puri-
fied CD34+ cells is not associated with any delay in
engraftment. Initial trials of autografts with CD34+

selected PBSCs have mainly been performed in adult
patients.80,81,101 The reasons for the limited use of this
technique in children have already been addressed. In
our study on pediatric patients, we compared
engraftment days between different modes of trans-
plantation with purified or unmanipulated blood
cells (Table 2). Immunologic recovery after autolo-
gous CD34+ selected cell transplantation has not yet
been reported. In our series of studies, we compared
lymphocyte phenotypes after autologous CD34+

selected cell transplantation with those after autolo-
gous unmanipulated cell transplantation, and found
no differences between the two types of transplanta-
tion (unpublished data).

A longer follow-up will be required to assess the
role and impact of CD34+ selection on the outcome
of high-dose therapy. There are on-going random-
ized trials evaluating enriched CD34+ cells auto-
transplants in adult patients with cancer such as
breast cancer and multiple myeloma.101-103

A very intriguing approach is consecutive high-dose
therapies for childhood cancer, in which each course
is followed by transplantation with G-CSF-mobilized
PBSC that have been been separated into CD34-neg-
ative and -positive fractions.104 The CD34-negative
fraction is used for the first transplantation and the
CD34-positive fraction is used for the second trans-
plantation. The objectives of this approach are to

170 T. Watanabe et al.

Table 2. Comparison of engraftment days between different
modes of transplantation with purified or unmanipulated
blood cells.

Auto PBSCT Auto CD34+ Allo-PBSCT Allo CD34+
(no.= 72) (no.= 20) (no.= 9) (no.= 8)

AGC >500 (x106/L)

Median 12 (16-25) 11 (9-18) 10 (8-19) 14 (9-20)

Mean±SD 13±4 12±2 10±2 13±3

PLT >50 (x109/L)

Median 16 (10-195) 26 (13-55) 16 (12-39) 20 (12-23)

Mean±SD 30±36 28±12 20±10 21±9

AGC: absolute granulocyte count; PLT: platelets.



enhance tumorcidal activity with double high-dose
chemotherapy and to use progenitor cells in the
CD34-negative fraction effectively. Interestingly, the
CD34-negative fraction was able to support mye-
loablative chemotherapy, and there was no differ-
ence in engraftment speed between CD34-negative
and -positive transplants.

Transplantation of allogeneic selected CD34+

cells
G-CSF-mobilized PBSC contain approximately one

log more T-lymphocytes than BM.105 Since T-lympho-
cytes are responsible for GvHD, a potential major dis-
advantage of allogeneic PBSCT is the possibility of an
increased rate of GvHD compared with that occurring
after allogeneic BMT. However, acute GvHD follow-
ing unmanipulated allogeneic PBSCT between HLA-
identical pairs does not seem to be increased, accord-
ing to several recent studies.19-21 This suggests that
above a particular T-cell threshold, the specificity of
T-cells for genetic disparity between the donor and
recipient, rather than the absolute number of T-cells,
determines the risk of GvHD. Thus, selection for
CD34+ cells may not be required in allogeneic PBSCT
between HLA-identical pairs, although chronic GvHD
might occur at a high incidence following unmanip-
ulated allogeneic PBSCT.106-108 However, GvHD might
contribute to a low relapse rate. This issue should be
resolved in future studies.

One major limitation of allogeneic PBSCT is the
lack of suitable donors. The search for an unrelated
matched donor is time-consuming, and rapid disease
progression in some patients makes this approach
impractical.109,110 The use of an HLA-mismatched
related donor avoids the lengthy search procedure
and provides donors for 90% of patients who may
potentially benefit from allogeneic transplantation.
To reduce the potential risk of severe GvHD, espe-
cially in transplantation between HLA-mismatched
related pairs, several investigators have attempted to
remove T-lymphocytes from allogeneic grafts using
the positive selection of CD34+ cells.111 This removes
a median of 2 to 2.5 log of T-cells while retaining 40%
to 70% of the CD34+ progenitor cells. An advantage
of CD34+ cell selection over antibody purging or elu-
triation of T-cells is that a compound allograft is pro-
duced, consisting of stem cell-enriched and unad-
sorbed fractions, the latter containing T-cells which
may be used for post-transplant immunotherapy.

In allogeneic CD34+ selected cell transplantation
between HLA-matched pairs, rapid early and durable
engraftment has been achieved.112-115 Chimerism
studies in allogeneic CD34+ selected PBSCT have
shown that complete chimerism is achieved in recip-
ients of a large number of CD34+ cells.116,117 Further-
more, to achieve complete chimerism, intense mye-
loablative treatment including total body irradiation
(TBI) might be necessary, especially in transplanta-
tion between HLA-mismatched pairs. So far, this pro-

cedure has been shown to be likely to prevent
GvHD.118 However, there are controversial reports
that question whether CD34+ cell selection com-
bined with post-transplant cyclosporin A (CsA) with
or without methotrexate is sufficient prophylaxis
against acute GvHD.111

Profound post-transplant immunodeficiency after
allogeneic CD34+ selected cell transplantation may
lead to a high risk of lethal infectious complica-
tions119-121 and post-transplant lymphoproliferative
disorders.122 The immunodeficiency seen after T-cell-
depleted transplantation including CD34+ selected
cells is caused by qualitative defects in cellular and
humoral immunity that can not be simply explained
by deficits in the numbers of circulating lymphocytes.
One possible explanation may be the decreased diver-
sity of the T-cell repertoire after transplantation.123

However, since additional B-cell depletion might be
beneficial for reducing post-transplant lymphopro-
liferative disorders,122 positive selection of CD34+ cells
may be a better approach than other methods of T-
cell depletion. The increased incidence of leukemia
relapse after T-cell depletion will obviously not be
overcome with the use of CD34+-selected PBSC
alone. However, the large quantities of lymphocytes
that can be segregated from PBSC grafts might be
used to add GVL activity with delayed T-cell add-
backs. Optimizing the dose and the timing of T-cell
addback, and the method of GVHD prophylaxis
should be evaluated.124

In our phase I feasibility study in patients who
lacked an HLA-matched donor, 13 children were
enrolled and PBSC were collected from healthy mis-
matched family donors who varied in one (2), two
(9) or 3 loci (2) from the respective recipients.32 Sub-
sequent bulk depletion of T-cells from PBSC was
accomplished with an ISOLEX 300 system. The medi-
an number of cells subjected to enrichment was
3.831010 (range 1.2-10.4), and 2.633108 (range
0.14-3.65) CD34+ cells were recovered with a medi-
an purity of 80% (range 19-98). The median yield of
CD34+ cells and CFU-GM was 37% and 28%, respec-
tively. Consequently, an average of 7.03106/kg
(range 2.2-14) CD34+ cells and 0.973105/kg  (range
0.05-2.09) CD3+ cells were infused. One patient died
of veno-occlusive disease of the liver (VOD) on day 17
and another patient in refractory leukemic relapse
rejected the graft after transient neutrophil recovery.
Nine of 11 patients demonstrated signs of engraft-
ment. However, subsequent rejection was seen in 3
patients, two of whom had autologous recovery.
Consequently, eight patients were evaluated in the
early phase of marrow recovery. The median number
of days to achieve an absolute granulocyte count
(AGC) of 0.53109/L was 14 (range 9-20) and that to
achieve a platelet count of 503109/L was 20 (range
12-23). Donor chimerism persisted in 5 patients until
death or current survival. All of the surviving patients
with functioning-donor-type hematopoiesis were giv-
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en TBI. De novo acute GvHD (grades II and IV) was
observed in 2 of the 8 evaluated patients. Scheduled
donor lymphocyte infusion (DLI), using the CD34-
negative fraction, was given to four patients, free of
de novo acute GvHD, beginning 28 to 43 days follow-
ing transplant. Three of these patients developed
acute GvHD (grades I, II and IV).

Thus, this approach for CD34+ cell purification
should be carefully evaluated in the setting of HLA-
mismatched PBSC transplantation and any benefits
should be weighed against the potential increased
risk of disease relapse, and perhaps delayed immuno-
logic reconstitution, as well as the cost of the proce-
dure.125 A larger group of patients will have to be
observed to answer these questions.

Promising future clinical applications
PB CD34+ cells are attractive targets for gene thera-

py, although many problems must be resolved before
this can become a clinical reality. Mobilized PB CD34+

provide more progenitor cells than BM harvest. A high
transduction efficacy has been demonstrated using
CD34+ selected PB cells.126 However, continued
expression post-transplantation remains low.

There has been interest in the in vitro production of
dendritic cells (DC) from PB CD34+ cells for use in
tumor immunization programs.127-130 CD34+ progen-
itors are isolated from the blood of healthy donors
and patients mobilized with G-CSF, and cultured in
the presence of GM-CSF and IL-4 with or without
tumor necrosis factor (TNF)-a or SCF.132 Potential
immunotherapy would involve ex vivo exposure of DCs
from cancer patients to tumor antigen, and reinfu-
sion of these pulsed DC into the patients.133,134

In various animal models, HSCT can be used to
treat autoimmune diseases such as systemic lupus
erythematosus and rheumatoid arthritis, basing this
treatment on the hypothesis that autoimmune dis-
eases originate from defects in hematopoietic stem
cells.135 Using CD34+ cell purification, we can expect
this approach to become a valuable strategy for the
treatment of patients with autoimmune disease.136-140
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